[
Afzali, S., Rezaei, N., Zendehboudi, S., 2018. A comprehensive review on enhanced oil recovery by water alternating gas (WAG) injection. Fuel, 227, 218–246. https://doi.org/10.1016/j.fuel.2018.04.01510.1016/j.fuel.2018.04.015
]Search in Google Scholar
[
Aissaoui, A., 1983. Etude théorique et expérimentale de l’hystérésis des pressions capillaires et des perméabilités relatives en vue du stockage souterrain de gaz. Ecole des Mines de Paris, Paris.
]Search in Google Scholar
[
Alyafei, N., 2015. Capillary trapping and oil recovery in altered-wettability carbonate rock. PhD thesis. Dept. of Earth Science and Engineering, Imperial College London.
]Search in Google Scholar
[
Blunt, M., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Pentland, C., 2013. Pore-scale imaging and modelling. Adv. Water Resour., 51, 197–216. DOI: https://doi.org/10.1016/j.advwatres.2012.03.00310.1016/j.advwatres.2012.03.003
]Search in Google Scholar
[
Bona, N., Garofoli, L., Radaelli, F., 2014. Trapped gas saturation measurements: New perpectives. SPE Annual Technical Conference and Exhibition, Amsterdam, The Netherlands, SPE- 170765-MS. https://doi.org/10.2118/170765-MS10.2118/170765-MS
]Search in Google Scholar
[
Element, D., Master, J., Sargent, N., Jayasekera, A., Goodyear, S., 2003. Assesment of three-phase relative permeability models using laboratory hysteresis data. SPE Int. Improved Oil Recovery Conf. in Asia Pacific, Kuala Lumpur, Malaysia, SPE-84903-MS. https://doi.org/10.2118/84903-MS10.2118/84903-MS
]Search in Google Scholar
[
Fatemi, S.M., Sohrabi, M., 2013. Experimental and theoretical investigation of oil and gas trapping under two- and three-phase flow including water alternating gas (WAG) injection. SPE Annual Techn. Conf. and Exhibition, New Orleans, Louisiana, USA, SPE-166193-MS. https://doi.org/10.2118/166193-MS10.2118/166193-MS
]Search in Google Scholar
[
Faybishenko, B.A., 1995. Hydraulic behavior of quasi-saturated soils in the presence of entrapped air: Laboratory experiments. Water Resour. Res., 31, 2421–2435. https://doi.org/10.1029/95WR0165410.1029/95WR01654
]Search in Google Scholar
[
Fayer, M.J., Hillel, D., 1986. Air encapsulation: II. Profile water storage and shallow water table fluctuations. Soil Sci. Soc. Am. J., 50, 572–577. https://doi.org/10.2136/sssaj1986.0361599500 5000030006x10.2136/sssaj1986.03615995005000030006x
]Search in Google Scholar
[
Fleury, M., Romero-Sarmiento, M.. 2016. Characterization of shales using T1–T2 NMR maps. J. Petrol. Sci. Eng., 137, 55–62. https://doi.org/10.1016/j.petrol.2015.11.00610.1016/j.petrol.2015.11.006
]Search in Google Scholar
[
Ge, X., Myers, M.T., Liu, J., Fan, Y., Zaid, M.A., Zhao, J., Hathon, L., 2021. Determining the transverse surfave relaxivity of reservoir rocks: A critical review and perspective. Marine and Pet. Geol., 126. https://doi.org/10.1016/j.marpetgeo. 2021.10493410.1016/j.marpetgeo.2021.104934
]Search in Google Scholar
[
Godoy, W., Pontedeiro, E.M., Hoerlle, F., Raoof, A., van Genuchten, M.Th., Santiago, J., Couto, P., 2019. Computational and experimental pore-scale studies of a carbonate rock sample. J. Hydrol. Hydromech., 67, 4, 372–383. http://dx.doi.org/10.2478/johh-2019-000910.2478/johh-2019-0009
]Search in Google Scholar
[
Gonçalves, R.D., Teramoto, E.H., Engelbrecht, B.Z, Soto, M.A., Chang, H.K van Genuchten, M.Th., 2019. Quasi-saturated layer: Implications for estimating recharge and groundwater modeling. Groundwater, 58, 3, 432–440. https://doi.org/10.1111/gwat.1291610.1111/gwat.12916731815931187874
]Search in Google Scholar
[
Gyllensten, A., Al-Hammadi, M. I., Abousrafa, E., Boyd, A., Ramamoorthy, R., Neumann, S., Neville, T.J., 2008. A new workflow for comprehensive petrophysical characterization of carbonate reservoirs drilled with water-base muds. Abu Dhabi Int. Petrol. Exhibition and Conf., Abu Dhabi, UAE, SPE-118380-MS. https://doi.org/10.2118/118380-MS10.2118/118380-MS
]Search in Google Scholar
[
Hamon, G., Suzanne, K., Billiote, J., Trocme, V., 2001. Field-wide variations of trapped gas saturation in heterogeneous sandstone. SPE Annual Techn. Conf. and Exhibition, New Orleans, Louisiana, SPE-71524-MS. https://doi.org/10.2118/71524-MS10.2118/71524-MS
]Search in Google Scholar
[
Herlinger, R.J., Zambonatto, E.E., de Ros, L.F., 2017. Infuence of diagenesis on the quality of lower Cretaceous Pre-Salt Lacustrine carbonate reservoirs from Northern Campos Basin, offshore Brazil. J. Sedim. Res., 87, 12, 1285–1313. https://doi.org/10.2110/jsr.2017.7010.2110/jsr.2017.70
]Search in Google Scholar
[
Jerauld, G.R., 1997. Prudhoe Bay gas/oil relative permeability. SPE Res. Eng., 12, SPE-35718-PA, 66–73. https://doi.org/10.2118/35718-PA10.2118/35718-PA
]Search in Google Scholar
[
Kazemi, F., Azin, R., Osfouri, S., 2020. Evaluation of phase trapping models in gas-condensate systems in an unconsolidated sand pack. J. Petrol. Sci. Eng., 195, 107848. https://doi.org/10.1016/j.petrol.2020.10784810.1016/j.petrol.2020.107848
]Search in Google Scholar
[
Khisamov, R.S., Bazarevskaya, V.G., Burkhanova, I.O., Kuzmin, V.A., Bolshakov, M.N., Marutyan, O.O.. 2020. Influence of the pore space structure and wettability on residual gas saturation. Georesour., 22, 2, 2–7. DOI:10.18599/grs.2020.2.2-710.18599/grs.2020.2.2-7
]Search in Google Scholar
[
Krevor, S., Blunt, M.J., Benson, S.M., Pentland, C.H., Reynolds, C., Al-Menhali, A., Niu, B., 2015. Capillary trapping for geologic carbon dioxide storage – From pore scale physics to field scale implications. Int. J. Greenh. Gas Control, 40, 221–237. https://doi.org/10.1016/j.ijggc.2015.04.00610.1016/j.ijggc.2015.04.006
]Search in Google Scholar
[
Lai, J., Wang, G., Wang, Z., Chen, J., Pang, X., Wang, S., Fan, X., 2018. A review on pore structure characterization in tight sandstones. Earth Sci. Rev., 117, 436–457. https://doi.org/10.1016/j.earscirev.2017.12.00310.1016/j.earscirev.2017.12.003
]Search in Google Scholar
[
Li, W., Lu, S., Xue, H., Zhang, P., Hu, Y., 2016. Microscopic pore structure in shale reservoir in the argillaceous dolomite from the Jianghan Basin. Fuel, 181, 1041–1049. https://doi.org/10.1016/j.fuel.2016.04.14010.1016/j.fuel.2016.04.140
]Search in Google Scholar
[
Lima, M.C., Pontedeiro, E.M., Ramirez, M.G., Favoreto, J., Santos, H.N., van Genuchten, M.Th., Raoof, A., 2022. Impacts of mineralogy on petrophysical properties. Transp. Porous Media, 145, 103–125. https://doi.org/10.1007/s11242-022-01829-w10.1007/s11242-022-01829-w
]Search in Google Scholar
[
Lima, M.C., Pontedeiro, E.M., Ramirez, M., Boyd, A., van Genuchten, M.Th., Borghi, L., Raoof, A., 2020. Petrophysical correlations for the permeability of coquinas (carbonate rocks). Transp. Porous Media, 135, 287–308. https://doi.org/10.1007/s11242-020-01474-110.1007/s11242-020-01474-1
]Search in Google Scholar
[
Meiboom, S., Gill, D., 1958. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum., 29, 688. https://doi.org/10.1063/1.171629610.1063/1.1716296
]Search in Google Scholar
[
Mohammadian, S., Geistlinger, H., Vogel, H.-J., 2015. Quantification of gas-phase trapping within the capillary fringe using computed microtomography. Vadose Zone J., 14, 1–9. https://doi.org/10.2136/vzj2014.06.006310.2136/vzj2014.06.0063
]Search in Google Scholar
[
Ni, H., Boon, M., Garing, C., Benson, S.M., 2019. Prediction CO2 resudual trapping ability based on experimental petrophysical properties for different sandstone types. Int. J. Greenh. Gas Control, 86, 158–176. https://doi.org/10.1016/j.ijggc.2019. 04.02410.1016/j.ijggc.2019.04.024
]Search in Google Scholar
[
Otsuki, B., Takemoto, M., Fujibayashi, S., Neo, M., Kokubo, T., Nakamura, T., 2006. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: Three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials, 27, 892–900. DOI: 10.1016/j.biomaterials.2006.08.01310.1016/j.biomaterials.2006.08.01316945409
]Search in Google Scholar
[
Raeini, A.Q., Bijeljic, B., Blunt, M.J., 2015. Modelling capillary trapping using finite volume simulation of two-phase flow directly on micro-CT images. Adv. Water Resour., 83, 102–110. https://doi.org/10.1016/j.advwatres.2015.05.00810.1016/j.advwatres.2015.05.008
]Search in Google Scholar
[
Raoof, A., Nick, H.M., Hassanizadeh, S.M., Spiers, C.J., 2013. Poreflow: A complex pore-network model for simulation of reactive transport in variably saturated porous media. Comp. Geosci., 61, 160–174. https://doi.org/10.1016/j.cageo.2013.08.00510.1016/j.cageo.2013.08.005
]Search in Google Scholar
[
Ruspini, L.C., Farokhpoor, R., Oren, P.E., 2017. Pore-scale modeling of capillary trapping in water-wet porous media: A new cooperative pore-body filling model. Adv. Water Resour., 108, 1–14. https://doi.org/10.1016/j.advwatres.2017.07.00810.1016/j.advwatres.2017.07.008
]Search in Google Scholar
[
Sahimi, M., 2012. Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches. Wiley, Germany. DOI: 10.1002/9783527636693
]Apri DOISearch in Google Scholar
[
Shao, X., Pang, X., Li, L., Zheng, D., 2017. Fractal analysis of pore network in tight gas sandstones using NMR method: A case study from the Ordos Basin, China. Energy Fuels, 31, 10, 10358–10368. https://doi.org/10.1021/acs.energyfuels.7b0100710.1021/acs.energyfuels.7b01007
]Search in Google Scholar
[
Silva, P.N., Gonçalvez, E.C., Rios, E.H., Muhammad, A., Moss, A., Pritchard, T., Azeredo, R.B., 2015. Automatic classification of carbonate rocks permeability from 1H NMR relaxation data. Expert Systems Appl., 9, 9, 4299–4309. https://doi.org/10. 1016/j.eswa.2015.01.03410.1016/j.eswa.2015.01.034
]Search in Google Scholar
[
Silveira, T.M., Hoerlle, F., Rocha, A.S., Lima, M.C., Ramirez, M.G., Pontedeiro, E.M., van Genuchten, M.Th., Couto, P., 2022. Effects of carbonated water injection on the pore system of a carbonate rock (coquina). J. Hydrol. Hydromech., 70, 2, 257–268. DOI: https://doi.org/10.2478/johh-2022-000110.2478/johh-2022-0001
]Search in Google Scholar
[
Souza, A.A., 2012. Estudo de Propriedades Petrofísicas de Rochas Sedimentares por Ressonância Magnética. PhD thesis, Materials Science and Engineering, São Paulo University, 207p.
]Search in Google Scholar
[
Sun, H., Vega, S., Tao, G., 2017. Analysis of heterogeneity and permeability anisotropy in carbonate rock samples using digital rock physics. J. Petr. Sci. Eng., 156, 419–429. https://doi.org/10.1016/j.petrol.2017.06.00210.1016/j.petrol.2017.06.002
]Search in Google Scholar
[
Suzanne, K., Billiote, J., 2004. Influence de la microporosité sur le piégeage du gaz dans un milieu poreaux naturel. Comptes Rendus Geosci., 336, 12, 1071–1078. https://doi.org/10.1016/j.crte.2004.04.01010.1016/j.crte.2004.04.010
]Search in Google Scholar
[
Suzanne, K., Hamon, G., Billiotte, J., Trocme, V., 2003. Experimental relationships between residual gas saturation and initial gas saturation in heterogeneous sandstone reservoirs. SPE Annual Techn. Conf. and Exhibition, Denver, Colorado, SPE-84038-MS. https://doi.org/10.2118/84038-MS10.2118/84038-MS
]Search in Google Scholar
[
Tanino, Y., Blunt, M., 2013. Laboratory investigation of capillary trapping under mixed-wet conditions. Water Resour. Res., 49, 7, 4311–4319. https://doi.org/10.1002/wrcr.2034410.1002/wrcr.20344
]Search in Google Scholar
[
Tanino, Y., Blunt, M., 2012. Capillary trapping in sandstone and carbonates: Dependence on pore structure. Water Resour. Res., 48, 8525. DOI: 10.1029/2011WR01171210.1029/2011WR011712
]Search in Google Scholar
[
Trevizan, W., Netto, P., Coutinho, B., Machado, V.F., Rios, E.H., Chen, S., Romero, P., 2014. Method for predicting permeability of complex carbonate reservoirs using NMR logging measurements. Petrophys., 55, 03, SPWLA-2014-v55n3a4, 240–252.
]Search in Google Scholar
[
Washburn, E.W., 1921. Note on a method of determining the distribution of pore sizes in a porous material. Proc. Nat. Acad. Sci. USA, 7, 115–116. DOI: 10.1073/pnas.7.4.115108476416576588
]Apri DOISearch in Google Scholar
[
Wang, S., Tokunaga, T.K., Wan, J., Dong, W., Kim, Y,, 2016. Capillary pressure-saturation relations in quartz and carbonate sands: Limitations for correlating capillary and wettability influences on air, oil, and supercritical CO2 trapping. Water Resour. Res., 52, 6671–6690. DOI: 10.1002/2016WR018816
]Apri DOISearch in Google Scholar
[
Wildenschild, D., Sheppard, A.P., 2013. X-Ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour., 51, 217–246. https://doi.org/10.1016/j.advwatres.2012.07.01810.1016/j.advwatres.2012.07.018
]Search in Google Scholar
[
Yuan, Y., Rezaee, R., 2019. Comparative porosity and pore structure assessment in shales: Measurement techniques, infuencing factors and implications for reservoir characterization. Energies, 12, 2094. https://doi.org/10.3390/en1211209410.3390/en12112094
]Search in Google Scholar