1. bookVolume 71 (2023): Issue 1 (March 2023)
Journal Details
First Published
28 Mar 2009
Publication timeframe
4 times per year
Open Access

Effects of pore size and pore connectivity on trapped gas saturation

Published Online: 04 Feb 2023
Volume & Issue: Volume 71 (2023) - Issue 1 (March 2023)
Page range: 11 - 21
Received: 22 Oct 2022
Accepted: 30 Dec 2022
Journal Details
First Published
28 Mar 2009
Publication timeframe
4 times per year

Afzali, S., Rezaei, N., Zendehboudi, S., 2018. A comprehensive review on enhanced oil recovery by water alternating gas (WAG) injection. Fuel, 227, 218–246. https://doi.org/10.1016/j.fuel.2018.04.01510.1016/j.fuel.2018.04.015 Search in Google Scholar

Aissaoui, A., 1983. Etude théorique et expérimentale de l’hystérésis des pressions capillaires et des perméabilités relatives en vue du stockage souterrain de gaz. Ecole des Mines de Paris, Paris. Search in Google Scholar

Alyafei, N., 2015. Capillary trapping and oil recovery in altered-wettability carbonate rock. PhD thesis. Dept. of Earth Science and Engineering, Imperial College London. Search in Google Scholar

Blunt, M., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Pentland, C., 2013. Pore-scale imaging and modelling. Adv. Water Resour., 51, 197–216. DOI: https://doi.org/10.1016/j.advwatres.2012.03.00310.1016/j.advwatres.2012.03.003 Search in Google Scholar

Bona, N., Garofoli, L., Radaelli, F., 2014. Trapped gas saturation measurements: New perpectives. SPE Annual Technical Conference and Exhibition, Amsterdam, The Netherlands, SPE- 170765-MS. https://doi.org/10.2118/170765-MS10.2118/170765-MS Search in Google Scholar

Element, D., Master, J., Sargent, N., Jayasekera, A., Goodyear, S., 2003. Assesment of three-phase relative permeability models using laboratory hysteresis data. SPE Int. Improved Oil Recovery Conf. in Asia Pacific, Kuala Lumpur, Malaysia, SPE-84903-MS. https://doi.org/10.2118/84903-MS10.2118/84903-MS Search in Google Scholar

Fatemi, S.M., Sohrabi, M., 2013. Experimental and theoretical investigation of oil and gas trapping under two- and three-phase flow including water alternating gas (WAG) injection. SPE Annual Techn. Conf. and Exhibition, New Orleans, Louisiana, USA, SPE-166193-MS. https://doi.org/10.2118/166193-MS10.2118/166193-MS Search in Google Scholar

Faybishenko, B.A., 1995. Hydraulic behavior of quasi-saturated soils in the presence of entrapped air: Laboratory experiments. Water Resour. Res., 31, 2421–2435. https://doi.org/10.1029/95WR0165410.1029/95WR01654 Search in Google Scholar

Fayer, M.J., Hillel, D., 1986. Air encapsulation: II. Profile water storage and shallow water table fluctuations. Soil Sci. Soc. Am. J., 50, 572–577. https://doi.org/10.2136/sssaj1986.0361599500 5000030006x Search in Google Scholar

Fleury, M., Romero-Sarmiento, M.. 2016. Characterization of shales using T1–T2 NMR maps. J. Petrol. Sci. Eng., 137, 55–62. https://doi.org/10.1016/j.petrol.2015.11.00610.1016/j.petrol.2015.11.006 Search in Google Scholar

Ge, X., Myers, M.T., Liu, J., Fan, Y., Zaid, M.A., Zhao, J., Hathon, L., 2021. Determining the transverse surfave relaxivity of reservoir rocks: A critical review and perspective. Marine and Pet. Geol., 126. https://doi.org/10.1016/j.marpetgeo. 2021.104934 Search in Google Scholar

Godoy, W., Pontedeiro, E.M., Hoerlle, F., Raoof, A., van Genuchten, M.Th., Santiago, J., Couto, P., 2019. Computational and experimental pore-scale studies of a carbonate rock sample. J. Hydrol. Hydromech., 67, 4, 372–383. http://dx.doi.org/10.2478/johh-2019-000910.2478/johh-2019-0009 Search in Google Scholar

Gonçalves, R.D., Teramoto, E.H., Engelbrecht, B.Z, Soto, M.A., Chang, H.K van Genuchten, M.Th., 2019. Quasi-saturated layer: Implications for estimating recharge and groundwater modeling. Groundwater, 58, 3, 432–440. https://doi.org/10.1111/gwat.1291610.1111/gwat.12916731815931187874 Search in Google Scholar

Gyllensten, A., Al-Hammadi, M. I., Abousrafa, E., Boyd, A., Ramamoorthy, R., Neumann, S., Neville, T.J., 2008. A new workflow for comprehensive petrophysical characterization of carbonate reservoirs drilled with water-base muds. Abu Dhabi Int. Petrol. Exhibition and Conf., Abu Dhabi, UAE, SPE-118380-MS. https://doi.org/10.2118/118380-MS10.2118/118380-MS Search in Google Scholar

Hamon, G., Suzanne, K., Billiote, J., Trocme, V., 2001. Field-wide variations of trapped gas saturation in heterogeneous sandstone. SPE Annual Techn. Conf. and Exhibition, New Orleans, Louisiana, SPE-71524-MS. https://doi.org/10.2118/71524-MS10.2118/71524-MS Search in Google Scholar

Herlinger, R.J., Zambonatto, E.E., de Ros, L.F., 2017. Infuence of diagenesis on the quality of lower Cretaceous Pre-Salt Lacustrine carbonate reservoirs from Northern Campos Basin, offshore Brazil. J. Sedim. Res., 87, 12, 1285–1313. https://doi.org/10.2110/jsr.2017.7010.2110/jsr.2017.70 Search in Google Scholar

Jerauld, G.R., 1997. Prudhoe Bay gas/oil relative permeability. SPE Res. Eng., 12, SPE-35718-PA, 66–73. https://doi.org/10.2118/35718-PA10.2118/35718-PA Search in Google Scholar

Kazemi, F., Azin, R., Osfouri, S., 2020. Evaluation of phase trapping models in gas-condensate systems in an unconsolidated sand pack. J. Petrol. Sci. Eng., 195, 107848. https://doi.org/10.1016/j.petrol.2020.10784810.1016/j.petrol.2020.107848 Search in Google Scholar

Khisamov, R.S., Bazarevskaya, V.G., Burkhanova, I.O., Kuzmin, V.A., Bolshakov, M.N., Marutyan, O.O.. 2020. Influence of the pore space structure and wettability on residual gas saturation. Georesour., 22, 2, 2–7. DOI:10.18599/grs.2020.2.2-710.18599/grs.2020.2.2-7 Search in Google Scholar

Krevor, S., Blunt, M.J., Benson, S.M., Pentland, C.H., Reynolds, C., Al-Menhali, A., Niu, B., 2015. Capillary trapping for geologic carbon dioxide storage – From pore scale physics to field scale implications. Int. J. Greenh. Gas Control, 40, 221–237. https://doi.org/10.1016/j.ijggc.2015.04.00610.1016/j.ijggc.2015.04.006 Search in Google Scholar

Lai, J., Wang, G., Wang, Z., Chen, J., Pang, X., Wang, S., Fan, X., 2018. A review on pore structure characterization in tight sandstones. Earth Sci. Rev., 117, 436–457. https://doi.org/10.1016/j.earscirev.2017.12.00310.1016/j.earscirev.2017.12.003 Search in Google Scholar

Li, W., Lu, S., Xue, H., Zhang, P., Hu, Y., 2016. Microscopic pore structure in shale reservoir in the argillaceous dolomite from the Jianghan Basin. Fuel, 181, 1041–1049. https://doi.org/10.1016/j.fuel.2016.04.14010.1016/j.fuel.2016.04.140 Search in Google Scholar

Lima, M.C., Pontedeiro, E.M., Ramirez, M.G., Favoreto, J., Santos, H.N., van Genuchten, M.Th., Raoof, A., 2022. Impacts of mineralogy on petrophysical properties. Transp. Porous Media, 145, 103–125. https://doi.org/10.1007/s11242-022-01829-w10.1007/s11242-022-01829-w Search in Google Scholar

Lima, M.C., Pontedeiro, E.M., Ramirez, M., Boyd, A., van Genuchten, M.Th., Borghi, L., Raoof, A., 2020. Petrophysical correlations for the permeability of coquinas (carbonate rocks). Transp. Porous Media, 135, 287–308. https://doi.org/10.1007/s11242-020-01474-110.1007/s11242-020-01474-1 Search in Google Scholar

Meiboom, S., Gill, D., 1958. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum., 29, 688. https://doi.org/10.1063/1.171629610.1063/1.1716296 Search in Google Scholar

Mohammadian, S., Geistlinger, H., Vogel, H.-J., 2015. Quantification of gas-phase trapping within the capillary fringe using computed microtomography. Vadose Zone J., 14, 1–9. https://doi.org/10.2136/vzj2014.06.006310.2136/vzj2014.06.0063 Search in Google Scholar

Ni, H., Boon, M., Garing, C., Benson, S.M., 2019. Prediction CO2 resudual trapping ability based on experimental petrophysical properties for different sandstone types. Int. J. Greenh. Gas Control, 86, 158–176. https://doi.org/10.1016/j.ijggc.2019. 04.024 Search in Google Scholar

Otsuki, B., Takemoto, M., Fujibayashi, S., Neo, M., Kokubo, T., Nakamura, T., 2006. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: Three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials, 27, 892–900. DOI: 10.1016/j.biomaterials.2006.08.01310.1016/j.biomaterials.2006.08.01316945409 Search in Google Scholar

Raeini, A.Q., Bijeljic, B., Blunt, M.J., 2015. Modelling capillary trapping using finite volume simulation of two-phase flow directly on micro-CT images. Adv. Water Resour., 83, 102–110. https://doi.org/10.1016/j.advwatres.2015.05.00810.1016/j.advwatres.2015.05.008 Search in Google Scholar

Raoof, A., Nick, H.M., Hassanizadeh, S.M., Spiers, C.J., 2013. Poreflow: A complex pore-network model for simulation of reactive transport in variably saturated porous media. Comp. Geosci., 61, 160–174. https://doi.org/10.1016/j.cageo.2013.08.00510.1016/j.cageo.2013.08.005 Search in Google Scholar

Ruspini, L.C., Farokhpoor, R., Oren, P.E., 2017. Pore-scale modeling of capillary trapping in water-wet porous media: A new cooperative pore-body filling model. Adv. Water Resour., 108, 1–14. https://doi.org/10.1016/j.advwatres.2017.07.00810.1016/j.advwatres.2017.07.008 Search in Google Scholar

Sahimi, M., 2012. Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches. Wiley, Germany. DOI: 10.1002/9783527636693 Open DOISearch in Google Scholar

Shao, X., Pang, X., Li, L., Zheng, D., 2017. Fractal analysis of pore network in tight gas sandstones using NMR method: A case study from the Ordos Basin, China. Energy Fuels, 31, 10, 10358–10368. https://doi.org/10.1021/acs.energyfuels.7b0100710.1021/acs.energyfuels.7b01007 Search in Google Scholar

Silva, P.N., Gonçalvez, E.C., Rios, E.H., Muhammad, A., Moss, A., Pritchard, T., Azeredo, R.B., 2015. Automatic classification of carbonate rocks permeability from 1H NMR relaxation data. Expert Systems Appl., 9, 9, 4299–4309. https://doi.org/10. 1016/j.eswa.2015.01.03410.1016/j.eswa.2015.01.034 Search in Google Scholar

Silveira, T.M., Hoerlle, F., Rocha, A.S., Lima, M.C., Ramirez, M.G., Pontedeiro, E.M., van Genuchten, M.Th., Couto, P., 2022. Effects of carbonated water injection on the pore system of a carbonate rock (coquina). J. Hydrol. Hydromech., 70, 2, 257–268. DOI: https://doi.org/10.2478/johh-2022-000110.2478/johh-2022-0001 Search in Google Scholar

Souza, A.A., 2012. Estudo de Propriedades Petrofísicas de Rochas Sedimentares por Ressonância Magnética. PhD thesis, Materials Science and Engineering, São Paulo University, 207p. Search in Google Scholar

Sun, H., Vega, S., Tao, G., 2017. Analysis of heterogeneity and permeability anisotropy in carbonate rock samples using digital rock physics. J. Petr. Sci. Eng., 156, 419–429. https://doi.org/10.1016/j.petrol.2017.06.00210.1016/j.petrol.2017.06.002 Search in Google Scholar

Suzanne, K., Billiote, J., 2004. Influence de la microporosité sur le piégeage du gaz dans un milieu poreaux naturel. Comptes Rendus Geosci., 336, 12, 1071–1078. https://doi.org/10.1016/j.crte.2004.04.01010.1016/j.crte.2004.04.010 Search in Google Scholar

Suzanne, K., Hamon, G., Billiotte, J., Trocme, V., 2003. Experimental relationships between residual gas saturation and initial gas saturation in heterogeneous sandstone reservoirs. SPE Annual Techn. Conf. and Exhibition, Denver, Colorado, SPE-84038-MS. https://doi.org/10.2118/84038-MS10.2118/84038-MS Search in Google Scholar

Tanino, Y., Blunt, M., 2013. Laboratory investigation of capillary trapping under mixed-wet conditions. Water Resour. Res., 49, 7, 4311–4319. https://doi.org/10.1002/wrcr.2034410.1002/wrcr.20344 Search in Google Scholar

Tanino, Y., Blunt, M., 2012. Capillary trapping in sandstone and carbonates: Dependence on pore structure. Water Resour. Res., 48, 8525. DOI: 10.1029/2011WR01171210.1029/2011WR011712 Search in Google Scholar

Trevizan, W., Netto, P., Coutinho, B., Machado, V.F., Rios, E.H., Chen, S., Romero, P., 2014. Method for predicting permeability of complex carbonate reservoirs using NMR logging measurements. Petrophys., 55, 03, SPWLA-2014-v55n3a4, 240–252. Search in Google Scholar

Washburn, E.W., 1921. Note on a method of determining the distribution of pore sizes in a porous material. Proc. Nat. Acad. Sci. USA, 7, 115–116. DOI: 10.1073/pnas.7.4.115108476416576588 Open DOISearch in Google Scholar

Wang, S., Tokunaga, T.K., Wan, J., Dong, W., Kim, Y,, 2016. Capillary pressure-saturation relations in quartz and carbonate sands: Limitations for correlating capillary and wettability influences on air, oil, and supercritical CO2 trapping. Water Resour. Res., 52, 6671–6690. DOI: 10.1002/2016WR018816 Open DOISearch in Google Scholar

Wildenschild, D., Sheppard, A.P., 2013. X-Ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour., 51, 217–246. https://doi.org/10.1016/j.advwatres.2012.07.01810.1016/j.advwatres.2012.07.018 Search in Google Scholar

Yuan, Y., Rezaee, R., 2019. Comparative porosity and pore structure assessment in shales: Measurement techniques, infuencing factors and implications for reservoir characterization. Energies, 12, 2094. https://doi.org/10.3390/en1211209410.3390/en12112094 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo