This work is licensed under the Creative Commons Attribution 4.0 International License.
Miao F, Wu D, Liu Z, Zhang R, Tang M and Li Y. Wearable sensing, big data technology for cardiovascular healthcare: current status and future prospective. Chinese Medical Journal 2023; vol. 136. Publisher: Chinese Medical Journals Publishing House Co., Ltd. 42 Dongsi Xidajie:1015–25. DOI: 10.1097/CM9.0000000000002117MiaoFWuDLiuZZhangRTangMLiY.Wearable sensing, big data technology for cardiovascular healthcare: current status and future prospective. Chinese Medical Journal2023; vol. 136. Publisher: Chinese Medical Journals Publishing House Co., Ltd. 42 Dongsi Xidajie:1015–25. DOI: 10.1097/CM9.0000000000002117Open DOISearch in Google Scholar
Mizuno A, Changolkar S and Patel MS. Wearable devices to monitor and reduce the risk of cardiovascular disease: evidence and opportunities. Annual review of medicine 2021; vol. 72. Publisher: Annual Reviews:459–71. DOI: 10.1146/annurev-med-050919-031534MizunoAChangolkarSPatelMS.Wearable devices to monitor and reduce the risk of cardiovascular disease: evidence and opportunities. Annual review of medicine2021; vol. 72. Publisher: Annual Reviews:459–71. DOI: 10.1146/annurev-med-050919-031534Open DOISearch in Google Scholar
Hina A and Saadeh W. Noninvasive blood glucose monitoring systems using near-infrared technology—a review. Sensors 2022; 22:4855. DOI: 10.3390/s22134855HinaASaadehW.Noninvasive blood glucose monitoring systems using near-infrared technology—a review. Sensors2022; 22:4855. DOI: 10.3390/s22134855Open DOISearch in Google Scholar
Shokrekhodaei M, Cistola DP, Roberts RC and Quinones S. Non-invasive glucose monitoring using optical sensor and machine learning techniques for diabetes applications. IEEE Access 2021; 9:73029–45. DOI: 10.1109/ACCESS.2021.3079182ShokrekhodaeiMCistolaDPRobertsRCQuinonesS.Non-invasive glucose monitoring using optical sensor and machine learning techniques for diabetes applications. IEEE Access2021; 9:73029–45. DOI: 10.1109/ACCESS.2021.3079182Open DOISearch in Google Scholar
Sanai F, Sahid AS, Huvanandana J, Spoa S, Boyle LH, Hribar J, Wang DTY, Kwan B, Colagiuri S, Cox SJ et al. Evaluation of a continuous blood glucose monitor: a novel and non-invasive wearable using bioimpedance technology. Journal of diabetes science and technology 2023; 17:336–44. DOI: 10.1177/19322968211054110SanaiFSahidASHuvanandanaJSpoaSBoyleLHHribarJWangDTYKwanBColagiuriSCoxSJEvaluation of a continuous blood glucose monitor: a novel and non-invasive wearable using bioimpedance technology. Journal of diabetes science and technology2023; 17:336–44. DOI: 10.1177/19322968211054110Open DOISearch in Google Scholar
McAuley SA, Dang TT, Horsburgh JC, Bansal A, Ward GM, Aroyan S, Jenkins AJ, MacIsaac RJ, Shah RV and O’Neal DN. Feasibility of an orthogonal redundant sensor incorporating optical plus redundant electrochemical glucose sensing. Journal of Diabetes Science and Technology 2016; 10:679–88. DOI: 10.1177/1932296816629982McAuleySADangTTHorsburghJCBansalAWardGMAroyanSJenkinsAJMacIsaacRJShahRVO’NealDN.Feasibility of an orthogonal redundant sensor incorporating optical plus redundant electrochemical glucose sensing. Journal of Diabetes Science and Technology2016; 10:679–88. DOI: 10.1177/1932296816629982Open DOISearch in Google Scholar
Saúde M da. Ministério da Saúde. Available from: https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/d/diabetesSaúdeM da.Ministério da Saúde. Available from: https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/d/diabetesSearch in Google Scholar
Hina A and Saadeh W. A 186μW photoplethysmography-based noninvasive glucose sensing SoC. IEEE Sensors Journal 2022; 22:14185–95. DOI: 10.1109/JSEN.2022.3180893HinaASaadehW.A 186μW photoplethysmography-based noninvasive glucose sensing SoC. IEEE Sensors Journal2022; 22:14185–95. DOI: 10.1109/JSEN.2022.3180893Open DOISearch in Google Scholar
Allegri D, Donida A, Malcovati P and Barrettino D. CMOS-based multifrequency impedance analyzer for biomedical applications. IEEE transactions on biomedical circuits and systems 2018; 12:1301–12. DOI: 10.1109/ISCAS.2018.8351287AllegriDDonidaAMalcovatiPBarrettinoD.CMOS-based multifrequency impedance analyzer for biomedical applications. IEEE transactions on biomedical circuits and systems2018; 12:1301–12. DOI: 10.1109/ISCAS.2018.8351287Open DOISearch in Google Scholar
Hesham R, Soltan A and Madian A. Energy harvesting schemes for wearable devices. AEU-International Journal of Electronics and Communications 2021; 138:153888. DOI: 10.1016/j.aeue.2021.153888HeshamRSoltanAMadianA.Energy harvesting schemes for wearable devices. AEU-International Journal of Electronics and Communications2021; 138:153888. DOI: 10.1016/j.aeue.2021.153888Open DOISearch in Google Scholar
Corbacho I, Carrillo JM, Ausín JL, Domínguez MÁ, Pérez-Aloe R and Duque-Carrillo JF. Wide-bandwidth electronically programmable CMOS instrumentation amplifier for bioimpedance spectroscopy. IEEE Access 2022; 10. Publisher: IEEE:95604–12. DOI: 10.1109/ACCESS.2022.3204868CorbachoICarrilloJMAusínJLDomínguezMÁPérez-AloeRDuque-CarrilloJF.Wide-bandwidth electronically programmable CMOS instrumentation amplifier for bioimpedance spectroscopy. IEEE Access2022; 10. Publisher: IEEE:95604–12. DOI: 10.1109/ACCESS.2022.3204868Open DOISearch in Google Scholar
Abdolrazzaghi M, Katchinskiy N, Elezzabi AY, Light PE and Daneshmand M. Noninvasive glucose sensing in aqueous solutions using an active split-ring resonator. IEEE Sensors Journal 2021; 21:18742–55. DOI: 10.1109/JSEN.2021.3090050AbdolrazzaghiMKatchinskiyNElezzabiAYLightPEDaneshmandM.Noninvasive glucose sensing in aqueous solutions using an active split-ring resonator. IEEE Sensors Journal2021; 21:18742–55. DOI: 10.1109/JSEN.2021.3090050Open DOISearch in Google Scholar
Constantinou L, Bayford R and Demosthenous A. A wideband low-distortion CMOS current driver for tissue impedance analysis. IEEE Transactions on Circuits and Systems II: Express Briefs 2015; 62:154–8. DOI: 10.1109/TCSII.2014.2387632ConstantinouLBayfordRDemosthenousA.A wideband low-distortion CMOS current driver for tissue impedance analysis. IEEE Transactions on Circuits and Systems II: Express Briefs2015; 62:154–8. DOI: 10.1109/TCSII.2014.2387632Open DOISearch in Google Scholar
Pedro BG, Marcôndes DWC and Bertemes-Filho P. Analytical model for blood glucose detection using electrical impedance spectroscopy. Sensors 2020; 20:6928PedroBGMarcôndesDWCBertemes-FilhoP.Analytical model for blood glucose detection using electrical impedance spectroscopy. Sensors2020; 20:6928Search in Google Scholar
Pedro BG and Bertemes Filho P. Blood Glucose Detection Using 3-LEDs: Analytical Model. Revista Brasileira de Física Médica 2021; 15:613–3. DOI: 10.29384/rbfm.2021.v15.19849001613PedroBGBertemes FilhoP.Blood Glucose Detection Using 3-LEDs: Analytical Model. Revista Brasileira de Física Médica2021; 15:613–3. DOI: 10.29384/rbfm.2021.v15.19849001613Open DOISearch in Google Scholar
Teixeira LG and Bertemes-Filho P. Werable Device For Blood Glucose Level Analysis Using Electrical Bioimpedance and Near-Infrared: Preliminary Results. International Journal of Bioelectromagnetism 2022; 24TeixeiraLGBertemes-FilhoP.Werable Device For Blood Glucose Level Analysis Using Electrical Bioimpedance and Near-Infrared: Preliminary Results. International Journal of Bioelectromagnetism2022; 24Search in Google Scholar
EGluco. 2024. Available from: https://egluco.bio.br/EGluco. 2024. Available from: https://egluco.bio.br/Search in Google Scholar
Sirtoli V, Morcelles K, Gomez J and Bertemes-Filho P. Design and Evaluation of an Electrical Bioimpedance Device Based on DIBS for Myography during Isotonic Exercises. en. Journal of Low Power Electronics and Applications 2018 Dec; 8. Number: 4 Publisher: Multidisciplinary Digital Publishing Institute:50. DOI: 10.3390/jlpea8040050SirtoliVMorcellesKGomezJBertemes-FilhoP.Design and Evaluation of an Electrical Bioimpedance Device Based on DIBS for Myography during Isotonic Exercises. en. Journal of Low Power Electronics and Applications2018Dec; 8. Number: 4 Publisher: Multidisciplinary Digital Publishing Institute:50. DOI: 10.3390/jlpea8040050Open DOISearch in Google Scholar
Xu J, Harpe P and Van Hoof C. An Energy-Efficient and Reconfigurable Sensor IC for Bio-Impedance Spectroscopy and ECG Recording. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2018 Sep; 8. Conference Name: IEEE Journal on Emerging and Selected Topics in Circuits and Systems:616–26. DOI: 10.1109/JETCAS.2018.2834140XuJHarpePVan HoofC.An Energy-Efficient and Reconfigurable Sensor IC for Bio-Impedance Spectroscopy and ECG Recording. IEEE Journal on Emerging and Selected Topics in Circuits and Systems2018Sep; 8. Conference Name: IEEE Journal on Emerging and Selected Topics in Circuits and Systems:616–26. DOI: 10.1109/JETCAS.2018.2834140Open DOISearch in Google Scholar
Pliquett U, Schönfeldt M, Barthel A, Frense D, Nacke T and Beckmann D. Front end with offset-free symmetrical current source optimized for time domain impedance spectroscopy. en. Physiological Measurement 2011 Jun. DOI: 10.1088/0967-3334/32/7/S15PliquettUSchönfeldtMBarthelAFrenseDNackeTBeckmannD.Front end with offset-free symmetrical current source optimized for time domain impedance spectroscopy. en. Physiological Measurement2011Jun. DOI: 10.1088/0967-3334/32/7/S15Open DOISearch in Google Scholar
Tucker AS, Fox RM and Sadleir RJ. Biocompatible, High Precision, Wideband, Improved Howland Current Source With Lead-Lag Compensation. IEEE Transactions on Biomedical Circuits and Systems 2013 Feb; vol. 7:63– 70. DOI: 10.1109/TBCAS.2012.2199114TuckerASFoxRMSadleirRJ.Biocompatible, High Precision, Wideband, Improved Howland Current Source With Lead-Lag Compensation. IEEE Transactions on Biomedical Circuits and Systems2013Feb; vol. 7:63–70. DOI: 10.1109/TBCAS.2012.2199114Open DOISearch in Google Scholar
Marcondes DWC, Bertemes-Filho P and Paterno AS. Current Oscillator Based on Pyragas Model for Electrical Bioimpedance Applications. en. Electronics 2022 Jan; vol. 11. Number: 17 Publisher: Multidisciplinary Digital Publishing Institute. DOI: 10.3390/electronics11172653MarcondesDWCBertemes-FilhoPPaternoAS.Current Oscillator Based on Pyragas Model for Electrical Bioimpedance Applications. en. Electronics2022Jan; vol. 11. Number: 17 Publisher: Multidisciplinary Digital Publishing Institute. DOI: 10.3390/electronics11172653Open DOISearch in Google Scholar
Bertemes-Filho P. Tissue Characterisation using an Impedance Spectroscopy Probe. en. PhD thesis. University of Sheffield, 2002Bertemes-FilhoP.Tissue Characterisation using an Impedance Spectroscopy Probe. en. PhD thesis. University of Sheffield, 2002Search in Google Scholar
Bertemes-Filho P, Felipe A and Vincence VC. High Accurate Howland Current Source: Output Constraints Analysis. en. Circuits and Systems 2013; vol. 4:451–8. DOI: 10.4236/cs.2013.47059Bertemes-FilhoPFelipeAVincenceVC.High Accurate Howland Current Source: Output Constraints Analysis. en. Circuits and Systems2013; vol. 4:451–8. DOI: 10.4236/cs.2013.47059Open DOISearch in Google Scholar
A Comprehensive Study of the Howland Current Pump. Texas Instruments. Available from: https://www.ti.com/lit/an/snoa474a/snoa474a.pdfA Comprehensive Study of the Howland Current Pump. Texas Instruments. Available from: https://www.ti.com/lit/an/snoa474a/snoa474a.pdfSearch in Google Scholar
Silva PD da and Bertemes Filho P. Switched CMOS current source compared to enhanced Howland circuit for bio-impedance applications. Journal of electrical bioimpedance 2024; 15:145–53. DOI: 10.2478/joeb-2024-0017SilvaPD daBertemes FilhoP.Switched CMOS current source compared to enhanced Howland circuit for bio-impedance applications. Journal of electrical bioimpedance2024; 15:145–53. DOI: 10.2478/joeb-2024-0017Open DOISearch in Google Scholar