Accesso libero

On the selection of excitation signals for the fast spectroscopy of electrical bioimpedance

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Grimnes, S. and Martinsen, Ø. G. 2015. Bioimpedance and bio-electricity basics. 3rd edition. Elsevier-Academic Press.GrimnesS.MartinsenØ. G.2015Bioimpedance and bio-electricity basics3rd editionElsevier-Academic Press10.1016/B978-0-12-411470-8.00003-9Search in Google Scholar

Sanchez, B., Louarroudi, E., and Pintelon, R. 2015. Time-invariant measurement of time-varying bioimpedance using vector impedance analysis. Physiol. Meas. 36, pp. 595-620. https://doi.org/10.1088/0967-3334/36/3/595SanchezB.LouarroudiE.PintelonR.2015Time-invariant measurement of time-varying bioimpedance using vector impedance analysisPhysiol. Meas36595620https://doi.org/10.1088/0967-3334/36/3/59510.1088/0967-3334/36/3/59525700023Search in Google Scholar

Pliquett, U. 2010. Bioimpedance: A review for food processing. Food. Eng. Rev. 2, 2010, pp. 74-94. https://doi.org/10.1007/s12393-010-9019-zPliquettU.2010Bioimpedance: A review for food processingFood. Eng. Rev220107494https://doi.org/10.1007/s12393-010-9019-z10.1007/s12393-010-9019-zSearch in Google Scholar

Ojarand, J. and Min, M. 2014. Crest factor optimization of the multisine waveform for impedance spectroscopy bioimpedance spectroscopy. Physiol. Meas. 35, pp. 1019-1033. https://doi.org/10.1088/0967-3334/35/6/1019OjarandJ.MinM.2014Crest factor optimization of the multisine waveform for impedance spectroscopy bioimpedance spectroscopyPhysiol. Meas. 3510191033https://doi.org/10.1088/0967-3334/35/6/101910.1088/0967-3334/35/6/101924844568Search in Google Scholar

Min, M., Parve, T. and Pliquett, U. 2015. Impedance detection. In: Prof. Dongqing Li ed. Encyclopedia of microfluidics and nanofluidics. 2nd edition. New York: Springer, pp. 1338-1361. https://doi.org/10.1007/978-1-4614-5491-5_1783MinM.ParveT.PliquettU.2015Impedance detectionProf. Dongqing Li ed. Encyclopedia of microfluidics and nanofluidics2nd editionNew YorkSpringer13381361https://doi.org/10.1007/978-1-4614-5491-5_178310.1007/978-1-4614-5491-5_1783Search in Google Scholar

Schwan, H. P. 1963. Determination of biological impedances. In: Nastuk W.L. ed. Physical techniques in biological research. New York: Academic Press. 6, pp. 323-406. https://doi.org/10.1016/B978-1-4831-6743-5.50013-7SchwanH. P.1963Determination of biological impedancesNastukW.L.Physical techniques in biological researchNew YorkAcademic Press. 6323406https://doi.org/10.1016/B978-1-4831-6743-5.50013-710.1016/B978-1-4831-6743-5.50013-7Search in Google Scholar

Smith, S. 1999. The Scientist and engineer's guide to digital signal processing. San Diego: California Technical Publishing.SmithS.1999The Scientist and engineer's guide to digital signal processingSan DiegoCalifornia Technical PublishingSearch in Google Scholar

Nahvi, M. and Hoyle, B. 2009. Electrical impedance spectroscopy sensing for industrial processes. IEEE Sensors Journal. 9, pp. 1808-1816. https://doi.org/10.1109/JSEN.2009.2030979NahviM.HoyleB.2009Electrical impedance spectroscopy sensing for industrial processesIEEE Sensors Journal918081816https://doi.org/10.1109/JSEN.2009.203097910.1109/JSEN.2009.2030979Search in Google Scholar

Ojarand, J. et al. 2010. Nonlinear chirp pulse excitation for the fast impedance spectroscopy. Electronics and Electrical Engineering. 100(4), pp. 73-76.OjarandJ.2010Nonlinear chirp pulse excitation for the fast impedance spectroscopyElectronics and Electrical Engineering10047376Search in Google Scholar

Pliquett, U. 2013. Time-domain based impedance measurement: strengths and drawbacks. Journal of Physics: Conference Series 434, pp. 1-4. https://doi.org/10.1088/1742-6596/434/1/012092PliquettU.2013Time-domain based impedance measurement: strengths and drawbacksJournal of Physics: Conference Series43414https://doi.org/10.1088/1742-6596/434/1/01209210.1088/1742-6596/434/1/012092Search in Google Scholar

Ojarand, J., Rist, M., Min, M. 2016. Comparison of excitation signals and methods for a wideband bioimpedance measurement. In: Proc. of IEEE International Instrumentation and Measurement Technology Conference (I2MTC 2016), Taipei, Taiwan, May 23-26. Hoboken, NJ, USA: IEEE Conference Publications, pp. 1291-1296. https://doi.org/10.1109/I2MTC.2016.7520555OjarandJ.RistM.MinM.2016Comparison of excitation signals and methods for a wideband bioimpedance measurementProc. of IEEE International Instrumentation and Measurement Technology Conference (I2MTC 2016)Taipei, Taiwan, May 23-26Hoboken, NJ, USAIEEE Conference Publications12911296https://doi.org/10.1109/I2MTC.2016.752055510.1109/I2MTC.2016.7520555Search in Google Scholar

Godfrey, K. R. 1991. Introduction to binary signals used in system identification. Proc. Int. Conf. Control. 1, pp. 161-166.GodfreyK. R.1991Introduction to binary signals used in system identificationProc. Int. Conf. Control1161166Search in Google Scholar

Ward, L. and Cornish, B. 2004. Multiple frequency bioelectrical impedance analysis: how many frequencies to use? In: Proc. ICEBI XII and EIT V. 61, pp. 321-324.WardL.CornishB.2004Multiple frequency bioelectrical impedance analysis: how many frequencies to use?Proc. ICEBI XII and EIT V61321324Search in Google Scholar

Ojarand, J. and Min, M. 2017. Recent advances in crest factor minimization of multisine. Electronics and Electrical Engineering. 23(2), pp. 59-62. https://doi.org/10.5755/j01.eie.23.2.18001OjarandJ.MinM.2017Recent advances in crest factor minimization of multisineElectronics and Electrical Engineering2325962https://doi.org/10.5755/j01.eie.23.2.1800110.5755/j01.eie.23.2.18001Search in Google Scholar

Ojarand, J. et al. 2014. Optimization of multisine excitation for a bioimpedance measurement device. In: IEEE International Instrumentation and Measurement Technology Conference (I2MTC 2014), Montevideo, Uruguay, May 12-15. Hoboken, NJ, USA: IEEE Conference Publications, pp. 829-832. https://doi.org/10.1109/I2MTC.2014.6860859OjarandJ.2014Optimization of multisine excitation for a bioimpedance measurement deviceIEEE International Instrumentation and Measurement Technology Conference (I2MTC 2014), Montevideo, UruguayMay 12-15Hoboken, NJ, USAIEEE Conference Publications829832https://doi.org/10.1109/I2MTC.2014.686085910.1109/I2MTC.2014.6860859Search in Google Scholar

Yang, Y. et al. H. 2014. Development of a stair-step multifrequency synchronized excitation signal for fast bioimpedance spectroscopy. BioMed Research International. 2014, pp. 1-8.YangY.H. 2014. Development of a stair-step multifrequency synchronized excitation signal for fast bioimpedance spectroscopyBioMed Research International20141810.1155/2014/625601429089825610869Search in Google Scholar

Yang, Y. et al. 2015. Design of tri-level excitation signals for broadband bioimpedance spectroscopy. Physiol. Meas. 36, pp. 1995-2007. https://doi.org/10.1088/0967-3334/36/9/1995YangY.2015Design of tri-level excitation signals for broadband bioimpedance spectroscopyPhysiol. Meas361995-2007https://doi.org/10.1088/0967-3334/36/9/199510.1088/0967-3334/36/9/199526261063Search in Google Scholar

Ojarand, J. and Min, M. 2014. Efficient excitation signals for the fast impedance spectroscopy. Electronics and Electrical Engineering. 20(5), pp. 144-149. https://doi.org/10.5755/j01.eee.20.5.7115OjarandJ.MinM.2014Efficient excitation signals for the fast impedance spectroscopyElectronics and Electrical Engineering205144149https://doi.org/10.5755/j01.eee.20.5.711510.5755/j01.eee.20.5.7115Search in Google Scholar