[
Aber, J. S., Marzolff, I., & Ries, J. B. (2010). Image processing and analysis. In Small-Format Aerial Photography (pp. 159–181). Elsevier. http://dx.doi.org/10.1016/b978-0-444-53260-2.10011-0
]Search in Google Scholar
[
Abiri, R., Rizan, N., Balasundram, S. K., Shahbazi, A. B., & Abdul-Hamid, H. (2023). Application of digital technologies for ensuring agricultural productivity. Heliyon, 9(12), e22601. https://doi.org/10.1016/j.heliyon.2023.e22601
]Search in Google Scholar
[
Akhavan, S., Kanani, E., & Dehghanisanij, H. (2019). Assessment of different reference evapotranspiration models to estimate the actual evapotranspiration of corn (Zea mays L.) in a semiarid region (case study, Karaj, Iran). Theoretical and Applied Climatology, 137. https://doi.org/10.1007/s00704-018-2634-y
]Search in Google Scholar
[
Alam, M. M., Akter, M. Y., Islam, A. R. M. T., Mallick, J., Kabir, Z., Chu, R., Arabameri, A., Pal, S. C., Masud, A., Costache, R., & others. (2024). A review of recent advances and future prospects in calculation of reference evapotranspiration in Bangladesh using soft computing models. Journal of Environmental Management, 351, 119714.
]Search in Google Scholar
[
Allen, R. G., Pereira, S. L., Raes, D., & Smith, M. (1998). Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56. FAO - Food and Agriculture Organization of the United Nations.
]Search in Google Scholar
[
Allen, R. G., Walter, I. A., Elliot, R., & Jensen, M. E. (2005). The ASCE standardized reference evapotranspiration equation. American Society of Civil Engineers. http://dx.doi.org/10.1061/9780784408056
]Search in Google Scholar
[
Allen, Richard. G., Smith, M., Perrier, A. and P., Luis S., & others. (1994). An update for the definition of reference evapotranspiration. ICID Bulletin, 43(2), 1–34.
]Search in Google Scholar
[
Al-Sudani, H. I. Z. (2019). Derivation mathematical equations for future calculation of potential evapotranspiration in Iraq, a review of application of Thornthwaite evapotranspiration. Iraqi Journal of Science, 60(5), 1037–1048.
]Search in Google Scholar
[
Amani, S., & Shafizadeh-Moghadam, H. (2023). A review of machine learning models and influential factors for estimating evapotranspiration using remote sensing and ground-based data. Agricultural Water Management, 284, 108324. https://doi.org/10.1016/j.agwat.2023.108324
]Search in Google Scholar
[
Anggraini, N., & Slamet, B. (2021). Thornthwaite Models for Estimating Potential evapotranspiration in Medan City. IOP Conference Series: Earth and Environmental Science, 912, 012095.
]Search in Google Scholar
[
Aram, F., Higueras García, E., Solgi, E., & Mansournia, S. (2019). Urban green space cooling effect in cities. Heliyon, 5(4), e01339. https://doi.org/10.1016/j.heliyon.2019.e01339
]Search in Google Scholar
[
Aschonitis, V., Touloumidis, D., Veldhuis, ten, & Coenders-Gerrits, M. (2021). Correcting Thornthwaite potential evapotranspiration using a global grid of local coefficients to support temperature-based estimations of reference evapotranspiration and aridity indices. Earth System Science Data Discussions, 2021, 1–25.
]Search in Google Scholar
[
Babaeian E., Paheding S., Siddique N., Devabhaktuni V. K., Tuller M. (2022), Short- and mid-term forecasts of actual evapotranspiration with deep learning, Journal of Hydrology, 612(A), https://doi.org/10.1016/j.jhydrol.2022.128078.
]Search in Google Scholar
[
Baghdady, M., Mellon, S., Younts, R., & Aberg Cobo, F. (2022, September 30). Analysis of atmospheric conditions for optimizing optical communications. Laser Communication and Propagation through the Atmosphere and Oceans XI. http://dx.doi.org/10.1117/12.2633498
]Search in Google Scholar
[
Bajgain, R., Xiao, X., Wagle, P., Kimball, J., Brust, C., Basara, J., Gowda, P., Starks, P., & Neel, J. (2020a). Comparing evapotranspiration products of different temporal and spatial scales in native and managed prairie pastures. Remote Sensing, 13(1), 82. https://doi.org/10.3390/rs13010082
]Search in Google Scholar
[
Bajgain, R., Xiao, X., Wagle, P., Kimball, J., Brust, C., Basara, J., Gowda, P., Starks, P., & Neel, J. (2020b). Comparing evapotranspiration products of different temporal and spatial scales in native and managed prairie pastures. Remote Sensing, 13(1), 82. https://doi.org/10.3390/rs13010082
]Search in Google Scholar
[
Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. (1998). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of Hydrology, 212–213, 198–212. https://doi.org/10.1016/s0022-1694(98)00253-4
]Search in Google Scholar
[
Bates, R. L., & Jackson, Julia. A. (1980). Glossary of Geology. American Geological Institute, Falls Church, Va.
]Search in Google Scholar
[
Burba, G., & Anderson, D. J. (2010). A Brief Practical Guide to Eddy Covariance Flux Measurements: Principles and Workflow Examples for Scientific and Industrial Applications. LI-COR Biosciences.
]Search in Google Scholar
[
Campillo, C., Fortes, R., & Henar Prieto, M. del. (2012). Solar radiation effect on crop production. In Solar Radiation. InTech. http://dx.doi.org/10.5772/34796
]Search in Google Scholar
[
de Bruin, H. A. R., & Keijman, J. Q. (1979). The Priestley-Taylor Evaporation Model Applied to a Large, Shallow Lake in the Netherlands. Journal of Applied Meteorology (1962-1982), 18(7), 898–903.
]Search in Google Scholar
[
DeFries, R. (2013). Remote sensing and image processing. In Encyclopedia of Biodiversity (pp. 389–399). Elsevier. http://dx.doi.org/10.1016/b978-0-12-384719-5.00383-x
]Search in Google Scholar
[
Denager, T., Looms, M. C., Sonnenborg, T. O., & Jensen, K. H. (2020). Comparison of evapotranspiration estimates using the water balance and the eddy covariance methods. Vadose Zone Journal, 19(1). https://doi.org/10.1002/vzj2.20032
]Search in Google Scholar
[
Dimitrijević, M. S. (2023). Technological progress in the function of productivity and sustainability of agriculture: The case of innovative countries and the Republic of Serbia. Journal of Agriculture and Food Research, 14, 100856. https://doi.org/10.1016/j.jafr.2023.100856
]Search in Google Scholar
[
Dinpashoh, Y., Jhajharia, D., Fakheri-Fard, A., Singh, V. P., & Kahya, E. (2011). Trends in reference crop evapotranspiration over Iran. Journal of Hydrology, 399(3–4), 422–433.
]Search in Google Scholar
[
Dong, J., Dirmeyer, P. A., Lei, F., Anderson, M. C., Holmes, T. R. H., Hain, C., & Crow, W. T. (2020). Soil evaporation stress determines soil moisture‐evapotranspiration coupling strength in land surface modeling. Geophysical Research Letters, 47(21). https://doi.org/10.1029/2020gl090391
]Search in Google Scholar
[
Doorenbos, J. (1977). Crop water requirements. FAO Irrigation and Drainage Paper, 24, 1–144.
]Search in Google Scholar
[
Duhan, D., Singh, M. C., Singh, D., Satpute, S., Singh, S., & Prasad, V. (2023). Modeling reference evapotranspiration using machine learning and remote sensing techniques for semi-arid subtropical climate of Indian Punjab. Journal of Water and Climate Change, 14(7), 2227–2243. https://doi.org/10.2166/wcc.2023.003
]Search in Google Scholar
[
Elbeltagi, A., Kushwaha, N. L., Rajput, J., Vishwakarma, D. K., Kulimushi, L. C., Kumar, M., Zhang, J., Pande, C. B., Choudhari, P., Meshram, S. G., & others. (2022). Modelling daily reference evapotranspiration based on stacking hybridization of ANN with meta-heuristic algorithms under diverse agro-climatic conditions. Stochastic Environmental Research and Risk Assessment, 36(10), 3311–3334.
]Search in Google Scholar
[
Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., McCabe, M. F., Hook, S., Baldocchi, D., & Townsend, P. A. and others. (2017). The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resources Research, 53(4), 2618–2626.
]Search in Google Scholar
[
Gamon, J. A. (2015). Reviews and Syntheses: optical sampling of the flux tower footprint. Biogeosciences, 12(14), 4509–4523.
]Search in Google Scholar
[
Ghiat, I., Mackey, H. R., & Al-Ansari, T. (2021). A review of evapotranspiration measurement models, techniques and methods for open and closed agricultural field applications. Water, 13(18), 2523. https://doi.org/10.3390/w13182523
]Search in Google Scholar
[
Gonzalez T., F., Pavek, M. J., Holden, Z. J., & Garza, R. (2023). Evaluating potato evapotranspiration and crop coefficients in the Columbia Basin of Washington state. Agricultural Water Management, 286, 108371. https://doi.org/10.1016/j.agwat.2023.108371
]Search in Google Scholar
[
Gowda, P. H., Chavez, J. L., Colaizzi, P. D., Evett, S. R., Howell, T. A., & Tolk, J. A. (2007). ET mapping for agricultural water management: Present status and challenges. Irrigation Science, 26(3), 223–237. https://doi.org/10.1007/s00271-007-0088-6
]Search in Google Scholar
[
Guzinski, R., Nieto, H., Sandholt, I., & Karamitilios, G. (2020). Modelling high-resolution actual evapotranspiration through sentinel-2 and sentinel-3 data fusion. Remote Sensing, 12(9), 1433. https://doi.org/10.3390/rs12091433
]Search in Google Scholar
[
Hamed, M. M., Khan, N., Muhammad, M. K. I., & Shahid, S. (2022). Ranking of empirical evapotranspiration models in different climate zones of Pakistan. Land, 11(12), 2168.
]Search in Google Scholar
[
Hamouda, G. B., Tomozeiu, R., Pavan, V., Antolini, G., Snyder, R. L., & Ventura, F. (2021). Impacts of climate change and rising atmospheric CO2 on future projected reference evapotranspiration in Emilia-Romagna (Italy). Theoretical and Applied Climatology, 146(1), 801–820.
]Search in Google Scholar
[
Hamouda, G. B., Ventura, F., & others. (2020). Evaluation of some evapotran-spiration estimation models under CO2 increasing concentrations: A review. Italian Journal of Agrometeorology, 3, 85–98.
]Search in Google Scholar
[
Hargreaves, G. H., & Samani, Z. A. (1982). Estimating potential evapotranspiration. J Irrig Drain Div 108: 225-230.
]Search in Google Scholar
[
Hargreaves, G. H., & Samani, Z. A. (1985). Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1(2), 96–99.
]Search in Google Scholar
[
Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4–10. https://doi.org/10.1016/j.wace.2015.08.001
]Search in Google Scholar
[
Howell, T. A. (2005). LYSIMETRY. In Encyclopedia of Soils in the Environment (pp. 379–386). Elsevier. http://dx.doi.org/10.1016/b0-12-348530-4/00391-x
]Search in Google Scholar
[
Järvi, L., Rannik, Ü., Kokkonen, T. V., Kurppa, M., Karppinen, A., Kouznetsov, R. D., Rantala, P., Vesala, T., & Wood, C. R. (2018). Uncertainty of eddy covariance flux measurements over an urban area based on two towers. Atmospheric Measurement Techniques, 11(10), 5421–5438. https://doi.org/10.5194/amt-11-5421-2018
]Search in Google Scholar
[
Jensen, M. E., & Haise, H. K. (1965). Estimating Evapotranspiration from Solar Radiation. Journal of the Irrigation and Drainage, 89, 15–41.
]Search in Google Scholar
[
Jung, C.-G., Lee, D.-R., & Moon, J.-W. (2016). Comparison of the Penman-Monteith method and regional calibration of the Hargreaves equation for actual evapotranspiration using SWAT-simulated results in the Seolma-cheon basin, South Korea. Hydrological Sciences Journal, 61(4), 793–800.
]Search in Google Scholar
[
Khatami, R., Mountrakis, G., & Stehman, S. V. (2017). Mapping per-pixel predicted accuracy of classified remote sensing images. Remote Sensing of Environment, 191, 156–167. https://doi.org/10.1016/j.rse.2017.01.025
]Search in Google Scholar
[
Kiraga S., Peters, T. R., Molaei, B., Evett S. R. & Marek G. (2023) Reference Evapotranspiration Estimation Using Genetic Algorithm-Optimized Machine Learning Models and Standardized Penman–Monteith Equation in a Highly Advective Environment. Water, 16, https://doi.org/10.3390/w16010012
]Search in Google Scholar
[
Kirkham, M. B. (2014a). Potential evapotranspiration. In Principles of Soil and Plant Water Relations (pp. 501–514). Elsevier. http://dx.doi.org/10.1016/b978-0-12-420022-7.00028-8
]Search in Google Scholar
[
Kirkham, M. B. (2014b). Field Capacity, Wilting Point, Available Water, and the Non-Limiting Water Range. In Principles of Soil and Plant Water Relations (pp. 101–115). Academic Press.
]Search in Google Scholar
[
Kirschbaum, M. (2004). Direct and indirect climate change effects on photosynthesis and transpiration. Plant Biology, 6(03), 242–253.
]Search in Google Scholar
[
Kozlowski, T. T., & Pallardy, S. G. (1997). Transpiration and plant water balance. In Physiology of Woody Plants (pp. 269–308). Elsevier. http://dx.doi.org/10.1016/b978-012424162-6 /50029-6
]Search in Google Scholar
[
L., J. (1965). The state and movement of water in living organisms. 19th Symposia of the Society for Experimental Biology. Cambridge University Press, London, 1965, 205–234.
]Search in Google Scholar
[
Landsat Science. (2021, November 30). Landsat Science | A Joint NASA/USGS Earth Observation Program. https://landsat.gsfc.nasa.gov/data/
]Search in Google Scholar
[
LI-710 specifications. (n.d.). LI-COR Environmental. Retrieved August 21, 2024, from https://www.licor.com/env/products/LI-710/specs
]Search in Google Scholar
[
Makarieva, A. M., & Gorshkov, V. G. (2007). Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrology and Earth System Sciences, 11(2), 1013–1033. https://doi.org/10.5194/hess-11-1013-2007
]Search in Google Scholar
[
Mardikis, M., Kalivas, D., & Kollias, V. (2005). Comparison of interpolation methods for the prediction of reference evapotranspiration—an application in Greece. Water Resources Management, 19, 251–278.
]Search in Google Scholar
[
Melton, F. S., Huntington, J., Grimm, R., Herring, J., Hall, M., Rollison, D., Erickson, T., Allen, R., Anderson, M., Fisher, J. B., Kilic, A., Senay, G. B., Volk, J., Hain, C., Johnson, L., Ruhoff, A., Blankenau, P., Bromley, M., Carrara, W., … Anderson, R. G. (2021a). OpenET: Filling a critical data gap in water management for the western United States. JAWRA Journal of the American Water Resources Association, 58(6), 971–994. https://doi.org/10.1111/1752-1688.12956
]Search in Google Scholar
[
Melton, F. S., Huntington, J., Grimm, R., Herring, J., Hall, M., Rollison, D., Erickson, T., Allen, R., Anderson, M., Fisher, J. B., Kilic, A., Senay, G. B., Volk, J., Hain, C., Johnson, L., Ruhoff, A., Blankenau, P., Bromley, M., Carrara, W., … Anderson, R. G. (2021b). OpenET: Filling a critical data gap in water management for the western united states. JAWRA Journal of the American Water Resources Association, 58(6), 971–994. https://doi.org/10.1111/1752-1688.12956
]Search in Google Scholar
[
Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: Wetlands and water.
]Search in Google Scholar
[
Mokhtari, A., Sadeghi, M., Afrasiabian, Y., & Yu, K. (2023). OPTRAM-ET: A novel approach to remote sensing of actual evapotranspiration applied to Sentinel-2 and Landsat-8 observations. Remote Sensing of Environment, 286, 113443. https://doi.org/10.1016/j.rse.2022.113443
]Search in Google Scholar
[
Monteith, J. L. (1965). Evaporation and environment. Symposia of the Society for Experimental Biology, 205–234.
]Search in Google Scholar
[
Nagler, P. L., Scott, R. L., Westenburg, C., Cleverly, J. R., Glenn, E. P., & Huete, A. R. (2005). Evapotranspiration on western US rivers estimated using the Enhanced Vegetation Index from MODIS and data from eddy covariance and Bowen ratio flux towers. Remote Sensing of Environment, 97(3), 337–351.
]Search in Google Scholar
[
Ochoa-Sánchez, A., Crespo, P., Carrillo-Rojas, G., Sucozhanay, A., & Célleri, R. (2019). Actual evapotranspiration in the high Andean grasslands: A comparison of measurement and estimation methods. Frontiers in Earth Science, 7, 55.
]Search in Google Scholar
[
Pagano, A., Amato, F., Ippolito M., De Caro D., Croce D., Motisi A., Provenzano G., Tinnirello, I. (2023), Machine learning models to predict daily actual evapotranspiration of citrus orchards under regulated deficit irrigation, Ecological Informatics, 76, https://doi.org/10.1016/j.ecoinf.2023.102133.
]Search in Google Scholar
[
Pastorello, G., Trotta, C., Canfora, E., & al., C. et. (2020). The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 7(1), 225. https://doi.org/10.1038/s41597-020-0534-3
]Search in Google Scholar
[
Peacock, C., & Hess, T. (2004). Estimating evapotranspiration from a reed bed using the Bowen ratio energy balance method. Hydrological Processes, 18(2), 247–260.
]Search in Google Scholar
[
Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 193(1032), 120–145.
]Search in Google Scholar
[
Pereira, L. S., Allen, R. G., Smith, M., & Raes, D. (2015). Crop evapotranspiration estimation with FAO56: Past and future. Agricultural Water Management, 147, 4–20.
]Search in Google Scholar
[
Priestley, C. H. B., & Taylor, R. J. (1972). On the assessment of surface heat flux and evaporation. Mon. Weather Rev., 106, 81–92.
]Search in Google Scholar
[
Rahman, M. M., & Zhang, W. (2019). Review on estimation methods of the Earth’s surface energy balance components from ground and satellite measurements. Journal of Earth System Science, 128(4). https://doi.org/10.1007/s12040-019-1098-5
]Search in Google Scholar
[
Raja, P., Sona, F., Surendran, U., Srinivas, C. V., Kannan, K., Madhu, M., Mahesh, P., Annepu, S. K., Ahmed, M., Chandrasekar, K., Suguna, A. R., Kumar, V., & Jagadesh, M. (2024). Performance evaluation of different empirical models for reference evapotranspiration estimation over Udhagamandalm, The Nilgiris, India. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-60952-4
]Search in Google Scholar
[
Rasheed, M. W., Tang, J., Sarwar, A., Shah, S., Saddique, N., Khan, M. U., Imran Khan, M., Nawaz, S., Shamshiri, R. R., Aziz, M., & Sultan, M. (2022). Soil moisture measuring techniques and factors affecting the moisture dynamics: A comprehensive review. Sustainability, 14(18), 11538. https://doi.org/10.3390/su141811538
]Search in Google Scholar
[
Raza, A., Hu, Y., Acharki, S., Buttar, N. A., Ray, R. L., Khaliq, A., Zubair, N., Zubair, M., Syed, N. R., & Elbeltagi, A. (2023). Evapotranspiration importance in water resources management through cutting-edge approaches of remote sensing and machine learning algorithms. In Springer Hydrogeology (pp. 1–20). Springer International Publishing. http://dx.doi.org/10.1007/978-3-031-29394-8_1
]Search in Google Scholar
[
Roerink, G. J., Su, Z., & Menenti, M. (2000). S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25(2), 147–157. https://doi.org/10.1016/s1464-1909(99)00128-8
]Search in Google Scholar
[
Sauer, T. J., & Horton, R. (2005). Soil Heat Flux. Micrometeorology in Agricultural Systems, 47, 131–154. USDA-ARS / UNL Faculty.
]Search in Google Scholar
[
Savva, A. P., & Frenken, K. (2002). Crop water requirements and irrigation scheduling. FAO Sub-Regional Office for East and Southern Africa Harare.
]Search in Google Scholar
[
Sheil, D. (2018). Forests, atmospheric water and an uncertain future: The new biology of the global water cycle. Forest Ecosystems, 5(1). https://doi.org/10.1186/s40663-018-0138-y
]Search in Google Scholar
[
Shivers, S. W., Roberts, D. A., McFadden, J. P., & Tague, C. (2019). An analysis of atmospheric water vapor variations over a complex agricultural region using airborne imaging spectrometry. PLOS ONE, 14(12), e0226014. https://doi.org/10.1371/journal.pone.0226014
]Search in Google Scholar
[
Stanhill, G. (2005). EVAPOTRANSPIRATION. In D. Hillel (Ed.), Encyclopedia of Soils in the Environment (pp. 502–506). Elsevier. https://www.sciencedirect.com/science/article/pii/B0123485304003593
]Search in Google Scholar
[
Steiner, J., Howell, T., & Schneider, A. (1991). Lysimetric evaluation of daily potential evapotranspiration models for grain sorghum. Agronomy Journal, 83(1), 240–247.
]Search in Google Scholar
[
Stoyanova, J. S., Georgiev, C. G., & Neytchev, P. N. (2023). Drought monitoring in terms of evapotranspiration based on satellite data from meteosat in areas of strong land–atmosphere coupling. Land, 12(1), 240. https://doi.org/10.3390/land12010240
]Search in Google Scholar
[
Su, Z. (2002). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1), 85–100.
]Search in Google Scholar
[
Subedi, A., & Chávez, J. L. (2015). Crop evapotranspiration (ET) estimation models: A review and discussion of the applicability and limitations of ET methods. Journal of Agricultural Science, 7(6). https://doi.org/10.5539/jas.v7n6p50
]Search in Google Scholar
[
Sun, G., Hallema, D., & Asbjornsen, H. (2017). Ecohydrological processes and ecosystem services in the Anthropocene: A review. Ecological Processes, 6(1). https://doi.org/10.1186/s13717-017-0104-6
]Search in Google Scholar
[
Survey, U. G. (n.d.). Evapotranspiration Data - Nevada. https://nevada.usgs.gov/et/measured.html
]Search in Google Scholar
[
Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38(1), 55–94.
]Search in Google Scholar
[
Tolk, J. A. and E., Steven R., & Howell, T. A. (2006). Advection influences on evapotranspiration of alfalfa in a semiarid climate. Agronomy Journal, 98(6), 1646–1654.
]Search in Google Scholar
[
Ukkola, A. M., Abramowitz, G., & Kauwe, D. (2021). A flux tower dataset tailored for land model evaluation. Earth System Science Data Discussions, 2021, 1–20.
]Search in Google Scholar
[
Valipour, M. (2014). Temperature analysis of reference evapotranspiration models. Meteorological Applications, 22(3), 385–394. https://doi.org/10.1002/met.1465
]Search in Google Scholar
[
Volk, J. M., Huntington, J. L., Melton, F. S., Allen, R., Anderson, M., Fisher, J. B., Kilic, A., Ruhoff, A., Senay, G. B., Minor, B., Morton, C., Ott, T., Johnson, L., Comini de Andrade, B., Carrara, W., Doherty, C. T., Dunkerly, C., Friedrichs, M., Guzman, A., … Yang, Y. (2024). Assessing the accuracy of OpenET satellite-based evapotranspiration data to support water resource and land management applications. Nature Water, 2(2), 193–205. https://doi.org/10.1038/s44221-023-00181-7
]Search in Google Scholar
[
Wagle, P., Bhattarai, N., Gowda, P. H., & Kakani, V. G. (2017). Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum. ISPRS Journal of Photogrammetry and Remote Sensing, 128, 192–203. https://doi.org/10.1016/j.isprsjprs.2017.03.022
]Search in Google Scholar
[
Wanniarachchi, S., & Sarukkalige, R. (2022). A review on evapotranspiration estimation in agricultural water management: Past, present, and future. Hydrology, 9(7), 123.
]Search in Google Scholar
[
Wiesner, S., Desai, A. R., Duff, A. J., Metzger, S., & Stoy, P. C. (2022). Quantifying the natural climate solution potential of agricultural systems by combining eddy covariance and remote sensing. Journal of Geophysical Research: Biogeosciences, 127(9), e2022JG006895.
]Search in Google Scholar
[
Xiang, K., Li, Y., Horton, R., & Feng, H. (2020). Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review. Agricultural Water Management, 232, 106043. https://doi.org/https://doi.org/10.1016/j.agwat.2020.106043
]Search in Google Scholar
[
Xiao, C., Cai, J., Zhang, B., Chang, H., & Wei, Z. (2023). Evaluation and verification of two evapotranspiration models based on precision screening and partitioning of field temperature data. Agricultural Water Management, 278, 108166. https://doi.org/10.1016/j.agwat.2023.108166
]Search in Google Scholar
[
Xiao, J., Sun, F., Wang, T., & Wang, H. (2024). Estimation and validation of high-resolution evapotranspiration products for an arid river basin using multi-source remote sensing data. Agricultural Water Management, 298, 108864. https://doi.org/10.1016/j.agwat.2024.108864
]Search in Google Scholar
[
Yang, Y., Chen, R., Han, C., & Liu, Z. (2021). Evaluation of 18 models for calculating potential evapotranspiration in different climatic zones of China. Agricultural Water Management, 244, 106545. https://doi.org/10.1016/j.agwat.2020.106545
]Search in Google Scholar
[
Yates, D., & Strzepek, K. (1994). Potential evapotranspiration methods and their impact on the assessment of river basin runoff under climate change.
]Search in Google Scholar
[
Zardo, L., Geneletti, D., Pérez-Soba, M., & Van Eupen, M. (2017). Estimating the cooling capacity of green infrastructures to support urban planning. Ecosystem Services, 26, 225–235. https://doi.org/10.1016/j.ecoser.2017.06.016
]Search in Google Scholar
[
Zhang, K., Kimball, J. S., & Running, S. W. (2016). A review of remote sensing based actual evapotranspiration estimation. Wiley Interdisciplinary Reviews: Water, 3(6), 834–853.
]Search in Google Scholar
[
Zhang, Z., Wang, T., Skidmore, A. K., Cao, F., She, G., & Cao, L. (2023). An improved area-based approach for estimating plot-level tree DBH from airborne LiDAR data. Forest Ecosystems, 10, 100089. https://doi.org/10.1016/j.fecs.2023.100089
]Search in Google Scholar
[
Zhao, L., Xia, J., Xu, C., Wang, Z., Sobkowiak, L., & Long, C. (2013). Evapotranspiration estimation methods in hydrological models. Journal of Geographical Sciences, 23(2), 359–369. https://doi.org/10.1007/s11442-013-1015-9(2012). In Plant Responses and Control of Water Balance. Elsevier.
]Search in Google Scholar