Accès libre

How to Measure Evapotranspiration in Landscape-Ecological Studies? Overview of Concepts and Methods

,  et   
23 nov. 2024
À propos de cet article

Citez
Télécharger la couverture

Aber, J. S., Marzolff, I., & Ries, J. B. (2010). Image processing and analysis. In Small-Format Aerial Photography (pp. 159–181). Elsevier. http://dx.doi.org/10.1016/b978-0-444-53260-2.10011-0 Search in Google Scholar

Abiri, R., Rizan, N., Balasundram, S. K., Shahbazi, A. B., & Abdul-Hamid, H. (2023). Application of digital technologies for ensuring agricultural productivity. Heliyon, 9(12), e22601. https://doi.org/10.1016/j.heliyon.2023.e22601 Search in Google Scholar

Akhavan, S., Kanani, E., & Dehghanisanij, H. (2019). Assessment of different reference evapotranspiration models to estimate the actual evapotranspiration of corn (Zea mays L.) in a semiarid region (case study, Karaj, Iran). Theoretical and Applied Climatology, 137. https://doi.org/10.1007/s00704-018-2634-y Search in Google Scholar

Alam, M. M., Akter, M. Y., Islam, A. R. M. T., Mallick, J., Kabir, Z., Chu, R., Arabameri, A., Pal, S. C., Masud, A., Costache, R., & others. (2024). A review of recent advances and future prospects in calculation of reference evapotranspiration in Bangladesh using soft computing models. Journal of Environmental Management, 351, 119714. Search in Google Scholar

Allen, R. G., Pereira, S. L., Raes, D., & Smith, M. (1998). Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56. FAO - Food and Agriculture Organization of the United Nations. Search in Google Scholar

Allen, R. G., Walter, I. A., Elliot, R., & Jensen, M. E. (2005). The ASCE standardized reference evapotranspiration equation. American Society of Civil Engineers. http://dx.doi.org/10.1061/9780784408056 Search in Google Scholar

Allen, Richard. G., Smith, M., Perrier, A. and P., Luis S., & others. (1994). An update for the definition of reference evapotranspiration. ICID Bulletin, 43(2), 1–34. Search in Google Scholar

Al-Sudani, H. I. Z. (2019). Derivation mathematical equations for future calculation of potential evapotranspiration in Iraq, a review of application of Thornthwaite evapotranspiration. Iraqi Journal of Science, 60(5), 1037–1048. Search in Google Scholar

Amani, S., & Shafizadeh-Moghadam, H. (2023). A review of machine learning models and influential factors for estimating evapotranspiration using remote sensing and ground-based data. Agricultural Water Management, 284, 108324. https://doi.org/10.1016/j.agwat.2023.108324 Search in Google Scholar

Anggraini, N., & Slamet, B. (2021). Thornthwaite Models for Estimating Potential evapotranspiration in Medan City. IOP Conference Series: Earth and Environmental Science, 912, 012095. Search in Google Scholar

Aram, F., Higueras García, E., Solgi, E., & Mansournia, S. (2019). Urban green space cooling effect in cities. Heliyon, 5(4), e01339. https://doi.org/10.1016/j.heliyon.2019.e01339 Search in Google Scholar

Aschonitis, V., Touloumidis, D., Veldhuis, ten, & Coenders-Gerrits, M. (2021). Correcting Thornthwaite potential evapotranspiration using a global grid of local coefficients to support temperature-based estimations of reference evapotranspiration and aridity indices. Earth System Science Data Discussions, 2021, 1–25. Search in Google Scholar

Babaeian E., Paheding S., Siddique N., Devabhaktuni V. K., Tuller M. (2022), Short- and mid-term forecasts of actual evapotranspiration with deep learning, Journal of Hydrology, 612(A), https://doi.org/10.1016/j.jhydrol.2022.128078. Search in Google Scholar

Baghdady, M., Mellon, S., Younts, R., & Aberg Cobo, F. (2022, September 30). Analysis of atmospheric conditions for optimizing optical communications. Laser Communication and Propagation through the Atmosphere and Oceans XI. http://dx.doi.org/10.1117/12.2633498 Search in Google Scholar

Bajgain, R., Xiao, X., Wagle, P., Kimball, J., Brust, C., Basara, J., Gowda, P., Starks, P., & Neel, J. (2020a). Comparing evapotranspiration products of different temporal and spatial scales in native and managed prairie pastures. Remote Sensing, 13(1), 82. https://doi.org/10.3390/rs13010082 Search in Google Scholar

Bajgain, R., Xiao, X., Wagle, P., Kimball, J., Brust, C., Basara, J., Gowda, P., Starks, P., & Neel, J. (2020b). Comparing evapotranspiration products of different temporal and spatial scales in native and managed prairie pastures. Remote Sensing, 13(1), 82. https://doi.org/10.3390/rs13010082 Search in Google Scholar

Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. (1998). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of Hydrology, 212213, 198–212. https://doi.org/10.1016/s0022-1694(98)00253-4 Search in Google Scholar

Bates, R. L., & Jackson, Julia. A. (1980). Glossary of Geology. American Geological Institute, Falls Church, Va. Search in Google Scholar

Burba, G., & Anderson, D. J. (2010). A Brief Practical Guide to Eddy Covariance Flux Measurements: Principles and Workflow Examples for Scientific and Industrial Applications. LI-COR Biosciences. Search in Google Scholar

Campillo, C., Fortes, R., & Henar Prieto, M. del. (2012). Solar radiation effect on crop production. In Solar Radiation. InTech. http://dx.doi.org/10.5772/34796 Search in Google Scholar

de Bruin, H. A. R., & Keijman, J. Q. (1979). The Priestley-Taylor Evaporation Model Applied to a Large, Shallow Lake in the Netherlands. Journal of Applied Meteorology (1962-1982), 18(7), 898–903. Search in Google Scholar

DeFries, R. (2013). Remote sensing and image processing. In Encyclopedia of Biodiversity (pp. 389–399). Elsevier. http://dx.doi.org/10.1016/b978-0-12-384719-5.00383-x Search in Google Scholar

Denager, T., Looms, M. C., Sonnenborg, T. O., & Jensen, K. H. (2020). Comparison of evapotranspiration estimates using the water balance and the eddy covariance methods. Vadose Zone Journal, 19(1). https://doi.org/10.1002/vzj2.20032 Search in Google Scholar

Dimitrijević, M. S. (2023). Technological progress in the function of productivity and sustainability of agriculture: The case of innovative countries and the Republic of Serbia. Journal of Agriculture and Food Research, 14, 100856. https://doi.org/10.1016/j.jafr.2023.100856 Search in Google Scholar

Dinpashoh, Y., Jhajharia, D., Fakheri-Fard, A., Singh, V. P., & Kahya, E. (2011). Trends in reference crop evapotranspiration over Iran. Journal of Hydrology, 399(3–4), 422–433. Search in Google Scholar

Dong, J., Dirmeyer, P. A., Lei, F., Anderson, M. C., Holmes, T. R. H., Hain, C., & Crow, W. T. (2020). Soil evaporation stress determines soil moisture‐evapotranspiration coupling strength in land surface modeling. Geophysical Research Letters, 47(21). https://doi.org/10.1029/2020gl090391 Search in Google Scholar

Doorenbos, J. (1977). Crop water requirements. FAO Irrigation and Drainage Paper, 24, 1–144. Search in Google Scholar

Duhan, D., Singh, M. C., Singh, D., Satpute, S., Singh, S., & Prasad, V. (2023). Modeling reference evapotranspiration using machine learning and remote sensing techniques for semi-arid subtropical climate of Indian Punjab. Journal of Water and Climate Change, 14(7), 2227–2243. https://doi.org/10.2166/wcc.2023.003 Search in Google Scholar

Elbeltagi, A., Kushwaha, N. L., Rajput, J., Vishwakarma, D. K., Kulimushi, L. C., Kumar, M., Zhang, J., Pande, C. B., Choudhari, P., Meshram, S. G., & others. (2022). Modelling daily reference evapotranspiration based on stacking hybridization of ANN with meta-heuristic algorithms under diverse agro-climatic conditions. Stochastic Environmental Research and Risk Assessment, 36(10), 3311–3334. Search in Google Scholar

Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., McCabe, M. F., Hook, S., Baldocchi, D., & Townsend, P. A. and others. (2017). The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resources Research, 53(4), 2618–2626. Search in Google Scholar

Gamon, J. A. (2015). Reviews and Syntheses: optical sampling of the flux tower footprint. Biogeosciences, 12(14), 4509–4523. Search in Google Scholar

Ghiat, I., Mackey, H. R., & Al-Ansari, T. (2021). A review of evapotranspiration measurement models, techniques and methods for open and closed agricultural field applications. Water, 13(18), 2523. https://doi.org/10.3390/w13182523 Search in Google Scholar

Gonzalez T., F., Pavek, M. J., Holden, Z. J., & Garza, R. (2023). Evaluating potato evapotranspiration and crop coefficients in the Columbia Basin of Washington state. Agricultural Water Management, 286, 108371. https://doi.org/10.1016/j.agwat.2023.108371 Search in Google Scholar

Gowda, P. H., Chavez, J. L., Colaizzi, P. D., Evett, S. R., Howell, T. A., & Tolk, J. A. (2007). ET mapping for agricultural water management: Present status and challenges. Irrigation Science, 26(3), 223–237. https://doi.org/10.1007/s00271-007-0088-6 Search in Google Scholar

Guzinski, R., Nieto, H., Sandholt, I., & Karamitilios, G. (2020). Modelling high-resolution actual evapotranspiration through sentinel-2 and sentinel-3 data fusion. Remote Sensing, 12(9), 1433. https://doi.org/10.3390/rs12091433 Search in Google Scholar

Hamed, M. M., Khan, N., Muhammad, M. K. I., & Shahid, S. (2022). Ranking of empirical evapotranspiration models in different climate zones of Pakistan. Land, 11(12), 2168. Search in Google Scholar

Hamouda, G. B., Tomozeiu, R., Pavan, V., Antolini, G., Snyder, R. L., & Ventura, F. (2021). Impacts of climate change and rising atmospheric CO2 on future projected reference evapotranspiration in Emilia-Romagna (Italy). Theoretical and Applied Climatology, 146(1), 801–820. Search in Google Scholar

Hamouda, G. B., Ventura, F., & others. (2020). Evaluation of some evapotran-spiration estimation models under CO2 increasing concentrations: A review. Italian Journal of Agrometeorology, 3, 85–98. Search in Google Scholar

Hargreaves, G. H., & Samani, Z. A. (1982). Estimating potential evapotranspiration. J Irrig Drain Div 108: 225-230. Search in Google Scholar

Hargreaves, G. H., & Samani, Z. A. (1985). Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1(2), 96–99. Search in Google Scholar

Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4–10. https://doi.org/10.1016/j.wace.2015.08.001 Search in Google Scholar

Howell, T. A. (2005). LYSIMETRY. In Encyclopedia of Soils in the Environment (pp. 379–386). Elsevier. http://dx.doi.org/10.1016/b0-12-348530-4/00391-x Search in Google Scholar

Järvi, L., Rannik, Ü., Kokkonen, T. V., Kurppa, M., Karppinen, A., Kouznetsov, R. D., Rantala, P., Vesala, T., & Wood, C. R. (2018). Uncertainty of eddy covariance flux measurements over an urban area based on two towers. Atmospheric Measurement Techniques, 11(10), 5421–5438. https://doi.org/10.5194/amt-11-5421-2018 Search in Google Scholar

Jensen, M. E., & Haise, H. K. (1965). Estimating Evapotranspiration from Solar Radiation. Journal of the Irrigation and Drainage, 89, 15–41. Search in Google Scholar

Jung, C.-G., Lee, D.-R., & Moon, J.-W. (2016). Comparison of the Penman-Monteith method and regional calibration of the Hargreaves equation for actual evapotranspiration using SWAT-simulated results in the Seolma-cheon basin, South Korea. Hydrological Sciences Journal, 61(4), 793–800. Search in Google Scholar

Khatami, R., Mountrakis, G., & Stehman, S. V. (2017). Mapping per-pixel predicted accuracy of classified remote sensing images. Remote Sensing of Environment, 191, 156–167. https://doi.org/10.1016/j.rse.2017.01.025 Search in Google Scholar

Kiraga S., Peters, T. R., Molaei, B., Evett S. R. & Marek G. (2023) Reference Evapotranspiration Estimation Using Genetic Algorithm-Optimized Machine Learning Models and Standardized Penman–Monteith Equation in a Highly Advective Environment. Water, 16, https://doi.org/10.3390/w16010012 Search in Google Scholar

Kirkham, M. B. (2014a). Potential evapotranspiration. In Principles of Soil and Plant Water Relations (pp. 501–514). Elsevier. http://dx.doi.org/10.1016/b978-0-12-420022-7.00028-8 Search in Google Scholar

Kirkham, M. B. (2014b). Field Capacity, Wilting Point, Available Water, and the Non-Limiting Water Range. In Principles of Soil and Plant Water Relations (pp. 101–115). Academic Press. Search in Google Scholar

Kirschbaum, M. (2004). Direct and indirect climate change effects on photosynthesis and transpiration. Plant Biology, 6(03), 242–253. Search in Google Scholar

Kozlowski, T. T., & Pallardy, S. G. (1997). Transpiration and plant water balance. In Physiology of Woody Plants (pp. 269–308). Elsevier. http://dx.doi.org/10.1016/b978-012424162-6 /50029-6 Search in Google Scholar

L., J. (1965). The state and movement of water in living organisms. 19th Symposia of the Society for Experimental Biology. Cambridge University Press, London, 1965, 205–234. Search in Google Scholar

Landsat Science. (2021, November 30). Landsat Science | A Joint NASA/USGS Earth Observation Program. https://landsat.gsfc.nasa.gov/data/ Search in Google Scholar

LI-710 specifications. (n.d.). LI-COR Environmental. Retrieved August 21, 2024, from https://www.licor.com/env/products/LI-710/specs Search in Google Scholar

Makarieva, A. M., & Gorshkov, V. G. (2007). Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrology and Earth System Sciences, 11(2), 1013–1033. https://doi.org/10.5194/hess-11-1013-2007 Search in Google Scholar

Mardikis, M., Kalivas, D., & Kollias, V. (2005). Comparison of interpolation methods for the prediction of reference evapotranspiration—an application in Greece. Water Resources Management, 19, 251–278. Search in Google Scholar

Melton, F. S., Huntington, J., Grimm, R., Herring, J., Hall, M., Rollison, D., Erickson, T., Allen, R., Anderson, M., Fisher, J. B., Kilic, A., Senay, G. B., Volk, J., Hain, C., Johnson, L., Ruhoff, A., Blankenau, P., Bromley, M., Carrara, W., … Anderson, R. G. (2021a). OpenET: Filling a critical data gap in water management for the western United States. JAWRA Journal of the American Water Resources Association, 58(6), 971–994. https://doi.org/10.1111/1752-1688.12956 Search in Google Scholar

Melton, F. S., Huntington, J., Grimm, R., Herring, J., Hall, M., Rollison, D., Erickson, T., Allen, R., Anderson, M., Fisher, J. B., Kilic, A., Senay, G. B., Volk, J., Hain, C., Johnson, L., Ruhoff, A., Blankenau, P., Bromley, M., Carrara, W., … Anderson, R. G. (2021b). OpenET: Filling a critical data gap in water management for the western united states. JAWRA Journal of the American Water Resources Association, 58(6), 971–994. https://doi.org/10.1111/1752-1688.12956 Search in Google Scholar

Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: Wetlands and water. Search in Google Scholar

Mokhtari, A., Sadeghi, M., Afrasiabian, Y., & Yu, K. (2023). OPTRAM-ET: A novel approach to remote sensing of actual evapotranspiration applied to Sentinel-2 and Landsat-8 observations. Remote Sensing of Environment, 286, 113443. https://doi.org/10.1016/j.rse.2022.113443 Search in Google Scholar

Monteith, J. L. (1965). Evaporation and environment. Symposia of the Society for Experimental Biology, 205–234. Search in Google Scholar

Nagler, P. L., Scott, R. L., Westenburg, C., Cleverly, J. R., Glenn, E. P., & Huete, A. R. (2005). Evapotranspiration on western US rivers estimated using the Enhanced Vegetation Index from MODIS and data from eddy covariance and Bowen ratio flux towers. Remote Sensing of Environment, 97(3), 337–351. Search in Google Scholar

Ochoa-Sánchez, A., Crespo, P., Carrillo-Rojas, G., Sucozhanay, A., & Célleri, R. (2019). Actual evapotranspiration in the high Andean grasslands: A comparison of measurement and estimation methods. Frontiers in Earth Science, 7, 55. Search in Google Scholar

Pagano, A., Amato, F., Ippolito M., De Caro D., Croce D., Motisi A., Provenzano G., Tinnirello, I. (2023), Machine learning models to predict daily actual evapotranspiration of citrus orchards under regulated deficit irrigation, Ecological Informatics, 76, https://doi.org/10.1016/j.ecoinf.2023.102133. Search in Google Scholar

Pastorello, G., Trotta, C., Canfora, E., & al., C. et. (2020). The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 7(1), 225. https://doi.org/10.1038/s41597-020-0534-3 Search in Google Scholar

Peacock, C., & Hess, T. (2004). Estimating evapotranspiration from a reed bed using the Bowen ratio energy balance method. Hydrological Processes, 18(2), 247–260. Search in Google Scholar

Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 193(1032), 120–145. Search in Google Scholar

Pereira, L. S., Allen, R. G., Smith, M., & Raes, D. (2015). Crop evapotranspiration estimation with FAO56: Past and future. Agricultural Water Management, 147, 4–20. Search in Google Scholar

Priestley, C. H. B., & Taylor, R. J. (1972). On the assessment of surface heat flux and evaporation. Mon. Weather Rev., 106, 81–92. Search in Google Scholar

Rahman, M. M., & Zhang, W. (2019). Review on estimation methods of the Earth’s surface energy balance components from ground and satellite measurements. Journal of Earth System Science, 128(4). https://doi.org/10.1007/s12040-019-1098-5 Search in Google Scholar

Raja, P., Sona, F., Surendran, U., Srinivas, C. V., Kannan, K., Madhu, M., Mahesh, P., Annepu, S. K., Ahmed, M., Chandrasekar, K., Suguna, A. R., Kumar, V., & Jagadesh, M. (2024). Performance evaluation of different empirical models for reference evapotranspiration estimation over Udhagamandalm, The Nilgiris, India. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-60952-4 Search in Google Scholar

Rasheed, M. W., Tang, J., Sarwar, A., Shah, S., Saddique, N., Khan, M. U., Imran Khan, M., Nawaz, S., Shamshiri, R. R., Aziz, M., & Sultan, M. (2022). Soil moisture measuring techniques and factors affecting the moisture dynamics: A comprehensive review. Sustainability, 14(18), 11538. https://doi.org/10.3390/su141811538 Search in Google Scholar

Raza, A., Hu, Y., Acharki, S., Buttar, N. A., Ray, R. L., Khaliq, A., Zubair, N., Zubair, M., Syed, N. R., & Elbeltagi, A. (2023). Evapotranspiration importance in water resources management through cutting-edge approaches of remote sensing and machine learning algorithms. In Springer Hydrogeology (pp. 1–20). Springer International Publishing. http://dx.doi.org/10.1007/978-3-031-29394-8_1 Search in Google Scholar

Roerink, G. J., Su, Z., & Menenti, M. (2000). S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25(2), 147–157. https://doi.org/10.1016/s1464-1909(99)00128-8 Search in Google Scholar

Sauer, T. J., & Horton, R. (2005). Soil Heat Flux. Micrometeorology in Agricultural Systems, 47, 131–154. USDA-ARS / UNL Faculty. Search in Google Scholar

Savva, A. P., & Frenken, K. (2002). Crop water requirements and irrigation scheduling. FAO Sub-Regional Office for East and Southern Africa Harare. Search in Google Scholar

Sheil, D. (2018). Forests, atmospheric water and an uncertain future: The new biology of the global water cycle. Forest Ecosystems, 5(1). https://doi.org/10.1186/s40663-018-0138-y Search in Google Scholar

Shivers, S. W., Roberts, D. A., McFadden, J. P., & Tague, C. (2019). An analysis of atmospheric water vapor variations over a complex agricultural region using airborne imaging spectrometry. PLOS ONE, 14(12), e0226014. https://doi.org/10.1371/journal.pone.0226014 Search in Google Scholar

Stanhill, G. (2005). EVAPOTRANSPIRATION. In D. Hillel (Ed.), Encyclopedia of Soils in the Environment (pp. 502–506). Elsevier. https://www.sciencedirect.com/science/article/pii/B0123485304003593 Search in Google Scholar

Steiner, J., Howell, T., & Schneider, A. (1991). Lysimetric evaluation of daily potential evapotranspiration models for grain sorghum. Agronomy Journal, 83(1), 240–247. Search in Google Scholar

Stoyanova, J. S., Georgiev, C. G., & Neytchev, P. N. (2023). Drought monitoring in terms of evapotranspiration based on satellite data from meteosat in areas of strong land–atmosphere coupling. Land, 12(1), 240. https://doi.org/10.3390/land12010240 Search in Google Scholar

Su, Z. (2002). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1), 85–100. Search in Google Scholar

Subedi, A., & Chávez, J. L. (2015). Crop evapotranspiration (ET) estimation models: A review and discussion of the applicability and limitations of ET methods. Journal of Agricultural Science, 7(6). https://doi.org/10.5539/jas.v7n6p50 Search in Google Scholar

Sun, G., Hallema, D., & Asbjornsen, H. (2017). Ecohydrological processes and ecosystem services in the Anthropocene: A review. Ecological Processes, 6(1). https://doi.org/10.1186/s13717-017-0104-6 Search in Google Scholar

Survey, U. G. (n.d.). Evapotranspiration Data - Nevada. https://nevada.usgs.gov/et/measured.html Search in Google Scholar

Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38(1), 55–94. Search in Google Scholar

Tolk, J. A. and E., Steven R., & Howell, T. A. (2006). Advection influences on evapotranspiration of alfalfa in a semiarid climate. Agronomy Journal, 98(6), 1646–1654. Search in Google Scholar

Ukkola, A. M., Abramowitz, G., & Kauwe, D. (2021). A flux tower dataset tailored for land model evaluation. Earth System Science Data Discussions, 2021, 1–20. Search in Google Scholar

Valipour, M. (2014). Temperature analysis of reference evapotranspiration models. Meteorological Applications, 22(3), 385–394. https://doi.org/10.1002/met.1465 Search in Google Scholar

Volk, J. M., Huntington, J. L., Melton, F. S., Allen, R., Anderson, M., Fisher, J. B., Kilic, A., Ruhoff, A., Senay, G. B., Minor, B., Morton, C., Ott, T., Johnson, L., Comini de Andrade, B., Carrara, W., Doherty, C. T., Dunkerly, C., Friedrichs, M., Guzman, A., … Yang, Y. (2024). Assessing the accuracy of OpenET satellite-based evapotranspiration data to support water resource and land management applications. Nature Water, 2(2), 193–205. https://doi.org/10.1038/s44221-023-00181-7 Search in Google Scholar

Wagle, P., Bhattarai, N., Gowda, P. H., & Kakani, V. G. (2017). Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum. ISPRS Journal of Photogrammetry and Remote Sensing, 128, 192–203. https://doi.org/10.1016/j.isprsjprs.2017.03.022 Search in Google Scholar

Wanniarachchi, S., & Sarukkalige, R. (2022). A review on evapotranspiration estimation in agricultural water management: Past, present, and future. Hydrology, 9(7), 123. Search in Google Scholar

Wiesner, S., Desai, A. R., Duff, A. J., Metzger, S., & Stoy, P. C. (2022). Quantifying the natural climate solution potential of agricultural systems by combining eddy covariance and remote sensing. Journal of Geophysical Research: Biogeosciences, 127(9), e2022JG006895. Search in Google Scholar

Xiang, K., Li, Y., Horton, R., & Feng, H. (2020). Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review. Agricultural Water Management, 232, 106043. https://doi.org/https://doi.org/10.1016/j.agwat.2020.106043 Search in Google Scholar

Xiao, C., Cai, J., Zhang, B., Chang, H., & Wei, Z. (2023). Evaluation and verification of two evapotranspiration models based on precision screening and partitioning of field temperature data. Agricultural Water Management, 278, 108166. https://doi.org/10.1016/j.agwat.2023.108166 Search in Google Scholar

Xiao, J., Sun, F., Wang, T., & Wang, H. (2024). Estimation and validation of high-resolution evapotranspiration products for an arid river basin using multi-source remote sensing data. Agricultural Water Management, 298, 108864. https://doi.org/10.1016/j.agwat.2024.108864 Search in Google Scholar

Yang, Y., Chen, R., Han, C., & Liu, Z. (2021). Evaluation of 18 models for calculating potential evapotranspiration in different climatic zones of China. Agricultural Water Management, 244, 106545. https://doi.org/10.1016/j.agwat.2020.106545 Search in Google Scholar

Yates, D., & Strzepek, K. (1994). Potential evapotranspiration methods and their impact on the assessment of river basin runoff under climate change. Search in Google Scholar

Zardo, L., Geneletti, D., Pérez-Soba, M., & Van Eupen, M. (2017). Estimating the cooling capacity of green infrastructures to support urban planning. Ecosystem Services, 26, 225–235. https://doi.org/10.1016/j.ecoser.2017.06.016 Search in Google Scholar

Zhang, K., Kimball, J. S., & Running, S. W. (2016). A review of remote sensing based actual evapotranspiration estimation. Wiley Interdisciplinary Reviews: Water, 3(6), 834–853. Search in Google Scholar

Zhang, Z., Wang, T., Skidmore, A. K., Cao, F., She, G., & Cao, L. (2023). An improved area-based approach for estimating plot-level tree DBH from airborne LiDAR data. Forest Ecosystems, 10, 100089. https://doi.org/10.1016/j.fecs.2023.100089 Search in Google Scholar

Zhao, L., Xia, J., Xu, C., Wang, Z., Sobkowiak, L., & Long, C. (2013). Evapotranspiration estimation methods in hydrological models. Journal of Geographical Sciences, 23(2), 359–369. https://doi.org/10.1007/s11442-013-1015-9(2012). In Plant Responses and Control of Water Balance. Elsevier. Search in Google Scholar

Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Géosciences, Géosciences, autres, Sciences de la vie, Écologie