1. bookVolume 73 (2022): Edizione 1 (February 2022)
Dettagli della rivista
License
Formato
Rivista
eISSN
1339-309X
Prima pubblicazione
07 Jun 2011
Frequenza di pubblicazione
6 volte all'anno
Lingue
Inglese
Accesso libero

A new electrohydrodynamic printing method for patterns fabrication with low viscosity fluid of silicone oil

Pubblicato online: 12 Mar 2022
Volume & Edizione: Volume 73 (2022) - Edizione 1 (February 2022)
Pagine: 62 - 66
Ricevuto: 11 Nov 2021
Dettagli della rivista
License
Formato
Rivista
eISSN
1339-309X
Prima pubblicazione
07 Jun 2011
Frequenza di pubblicazione
6 volte all'anno
Lingue
Inglese

[1] B. Zhang, Y. Huang, L. Meng, and L. Lin, “Electrohydrodynamic 3D Printing of Orderly Carbon/Nickel Composite Network as Supercapacitor Electrodes” Journal of Materials Science and Technology, vol. 82, 135–143, 2021.10.1016/j.jmst.2020.12.034 Search in Google Scholar

[2] G. F. Zheng, J. X. Jiang, X. Wang, W. W. Li, Z. J. Yu, and L. W. Lin, “High-aspect-ratio three-dimensional electrospinning via a tip guiding electrode”, Materials & Design, vol. 198, 109304, 2021. Search in Google Scholar

[3] W. H. Zhou, H. B. Yu, P. L. Zhou, Y. Zhong, Y. C. Wang, and L. Q. Liu, “High-resolution additive direct writing of metal micro/nanostructures by electrohydrodynamic jet printing”, Applied Surface Science, vol. 543, 148800, 2021. Search in Google Scholar

[4] Y. Han and J. Dong, “High-Resolution Electrohydrodynamic (EHD) Direct Printing of Molten Metal”, Procedia Manufacturing, vol. 10, 845–850, 2017.10.1016/j.promfg.2017.07.070 Search in Google Scholar

[5] B. W. An, K, Kim, H. Lee, S. Y. Kim, Y. Shim, D. Y. Lee, J. Y. Song, and Park, J. U. Park, “High-resolution printing of 3 D structures using an electrohydrodynamic inkjet with multiple functional inks”, Advanced Materials, vol. 27, no. 29, 4322–4328, 2017.10.1002/adma.20150209226095718 Search in Google Scholar

[6] Y. Han, C. Wei, and J. Dong, “Droplet formation and settlement of phase-change ink in high resolution electrohydrodynamic (EHD) 3 D printing”, Journal of Manufacturing Processes, vol. 20, 485–491, 2015.10.1016/j.jmapro.2015.06.019 Search in Google Scholar

[7] J. Linzhi, W. Xiang, L. Bin, Z. Ningping, L. Hang, W. Shifei, L. Yuyun, S. Jie, and H. Dejian, “Engineered Nanotopography on the Microfibers of 3 D -Printed PCL Sca olds to Modulate Cellular Responses and Establish an In Vitro Tumor Model”, ACS Applied Bio Materials, vol. 4, 1381–1394, 2021. Search in Google Scholar

[8] K. Li, F. Zhang, D. Wang, Q. Qiu, M. Liu, A. Yu, and Y. Cui, 202. “Silkworm-inspired electrohydrodynamic jet 3 D printing of composite scaffold with ordered cell scale fibers for bone tissue engineering”, International Journal of Biological Macromolecules, vol. 172, 124–132, 2021.10.1016/j.ijbiomac.2021.01.01333418047 Search in Google Scholar

[9] Z. J. Meng, J. K. He, Z. X. Xia, and D. C. Li, “Fabrication of microfibrous PCL/MWCNTs scaffolds via melt-based electrohydrodynamic printing”, Materials Letters, vol. 278, 128440, 2021. Search in Google Scholar

[10] B. Zhang, B. Seong, V. Nguyen, and D. Byun, “3D printing of high-resolution PLA-based structures by hybrid electrohydro-dynamic and fused deposition modeling techniques”, Journal of Micromechanics and Microengineering, vol. 26, no. 2, 025015, 2021. Search in Google Scholar

[11] P. Ren, Y. Liu, R. Song, B. O’Connor, and Y. Zhu, “Achieving High-Resolution Electrohydrodynamic Printing of Nanowires on Elastomeric Substrates through Surface Modification”, ACS Applied Electronic Materials, vol. 3, no. 1, pp, 192–202, 2020.10.1021/acsaelm.0c00747 Search in Google Scholar

[12] Z. Cui, Y. Han, Q. Huang, J. Dong, and Y. Zhu “Electrohydro-dynamic printing of silver nanowires for flexible and stretchable electronics”, Nanoscale, vol. 10, no. 15, pp. 6806–6811, 2018. Search in Google Scholar

[13] Y. J. Jeong, X. Lee, J. Bae, J. Jang, S.W. Joo, S. Lim, S. H. Kim, and C. E. Park, “Direct patterning of conductive carbon nanotube/polystyrene sulfonate composites via electrohydrodynamic jet printing for use in organic field-effect transistors”, Journal of Materials Chemistry C, vol. 4, no. 22, pp. 4912–4919, 2016. Search in Google Scholar

[14] J. He, F. Xu, R. Dong, B. Guo, and D. Li, “Electrohydrodynamic 3D printing of microscale poly (e-caprolactone) sca olds with multi-walled carbon nanotubes”, Biofabrication, vol. 9, no. 1, 015007, 2017. Search in Google Scholar

[15] Y. Echegoyen, M. J. Fabra, J. L. Castro-Mayorga, A. Cherpinski, and J. M. Lagaron, “High throughput electro-hydrodynamic processing in food encapsulation and food packaging applications: Viewpoint”, Trends in Food Science & Technology, vol. 60, pp. 71–79, 2017.10.1016/j.tifs.2016.10.019 Search in Google Scholar

[16] Y. Wu, “Electrohydrodynamic jet 3D printing in biomedical applications”, Acta Biomaterialia, vol. 128, pp. 21–41, 2021.10.1016/j.actbio.2021.04.03633905945 Search in Google Scholar

[17] F. Akhter, S. B. Yakob, N. Nam-Trung, and H. T. Ta, “Surface Modification Techniques for Endothelial Cell Seeding in PDMS Microfluidic Devices”, Biosensors, vol. 10, no. 11, 182, 2020. Search in Google Scholar

[18] Q. Tang, X. Li, C. Lai, L. Li, H. Wu, Y. Wang, and X. Shi, “Fabrication of a hydroxyapatite-PDMS microfluidic chip for bone-related cell culture and drug screening”, Bioactive Materials, vol. 6, no. 1, pp. 169–178, 2021.10.1016/j.bioactmat.2020.07.016745312432913926 Search in Google Scholar

[19] J. Hwang, Y. Kim, H. Yang, and J. H. Oh, “Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor”, Composites Part B-Engineering, vol. 211, 108607, 2021. Search in Google Scholar

[20] M. Zare, E. R. Ghoami, P.D. Venkatraman, and S. Ramakrishna, “Silicone-based biomaterials for biomedical applications: Antimicrobial strategies and 3 D printing technologies’, Journal of Applied Polymer Science, vol. 138, no. 38, e50969, 2021.10.1002/app.50969 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo