1. bookVolume 73 (2022): Edizione 1 (February 2022)
Dettagli della rivista
License
Formato
Rivista
eISSN
1339-309X
Prima pubblicazione
07 Jun 2011
Frequenza di pubblicazione
6 volte all'anno
Lingue
Inglese
Accesso libero

Pressure and humidity detector based on textile integrated waveguide

Pubblicato online: 12 Mar 2022
Volume & Edizione: Volume 73 (2022) - Edizione 1 (February 2022)
Pagine: 57 - 61
Ricevuto: 28 Oct 2021
Dettagli della rivista
License
Formato
Rivista
eISSN
1339-309X
Prima pubblicazione
07 Jun 2011
Frequenza di pubblicazione
6 volte all'anno
Lingue
Inglese

[1] W. He, C. Wang, H. Wang, M. Jian, W. Lu, X. Liang, X. Zhang, F. Yang, and Y. Zhang, “Integrated Textile Sensor Patch for Real–Time and Multiplex Sweat Analysis”, Science Advances, vol. 5, no. 11, pp. 1–8, 2019.10.1126/sciadv.aax0649683993631723600 Search in Google Scholar

[2] D. Teichmann, A. Kuhn, S. Leonhardt, and M. Walter, “The Main Shirt: A Textile–Integrated Magnetic Induction Sensor Array”, Sensors, vol. 14, no. 1, pp. 1039–1056, 2014. Search in Google Scholar

[3] A. V. Cioffi, A. Raffo, and S. Costanzo, “Preliminary Validations of Textile Wearable Microwave Sensor for Biomedical Applications”, 13th European Conference on Antennas and Propagation, Krakow vol., no. Poland, IEEE, 2019. Search in Google Scholar

[4] M. Cupal et al, “Textile–Integrated Electronics for Small Airplanes”, 12th European Conference on Antennas and Propagation, London vol., no. UK, IEEE, 2018.10.1049/cp.2018.0845 Search in Google Scholar

[5] C. Loss, C. Gouveia, R. Salvado, P. Pinho, and J. Vieira, “Textile Antenna for Bio–Radar Embedded in a Car Seat”, Materials, vol. 14, no. 1, pp. 1–18, 2021.10.3390/ma14010213779542333406756 Search in Google Scholar

[6] C. Ataman, T. Kinkeldei, G. Mattana, A. V. Quintero, F. Molina–lopez, J. Courbat, K. Cherenack, D. Briand, G. Trster, and N. F. d. Rooij, “Robust Platform for Textile Integrated Gas Sensors”, Sensors & Actuators B: Chemical, vol. 177, pp. 1053–1061, 2013. Search in Google Scholar

[7] Y. J. Yun, W. G. Hong, N. J. Choi, B. H. Kim, Y. Jun, and H. K. Lee, “Ultrasensitive and Highly Selective Graphene–Based Single Yarn for Use in Wearable Gas Sensor”, Scientific Reports, vol. 5, no. 1, article pp, 10904, 2015.10.1038/srep10904445525326043109 Search in Google Scholar

[8] T. Kinkeldei, C. Zysset, K. H. Cherenack, and G. Troster, “A Textile Integrated Sensor System for Monitoring Humidity and Temperature”, 16th International Conference on Solid–State Sensors, Actuators and Microsystems, Beijing vol., no. China, IEEE, 2011.10.1109/TRANSDUCERS.2011.5969238 Search in Google Scholar

[9] C. Zysset, N. Nasseri, L. Bthe, N. Mnzenrieder, T. Kinkeldei, L. Petti, S. Kleiser, G. A. Salvatore, M. Wolf, and G. Trster, “Textile Integrated Sensors and Actuators for Near–Infrared Spectroscopy”, Optics Express, vol. 21, no. 3, pp. 3213–3224, 2013. Search in Google Scholar

[10] J. Tabor, T. Agcayazi, A. Fleming, B. Thompson, A. Kapoor, M. Liu, M. Y. Lee, H. Huang, A. Bozkurt, and T. K. Ghosh, “Textile–Based Pressure Sensors for Monitoring Prosthetic–Socket Interfaces”, IEEE Sensors Journal, vol. 21, no. 7, pp. 9413–9422, 2021. Search in Google Scholar

[11] S. K. Bahadir, F. Kalaoglu, S. Thomassey, I. Cristian, and V. Koncar, “A Study on the Beam Pattern of Ultrasonic Sensor Integrated to Textile Structure”, ternational Journal of Clothing Science and Technology, vol. 23, no. 4, pp. 232–241, 2011.10.1108/09556221111136494 Search in Google Scholar

[12] M. Kokolia, “Hexagonal–Cell Artifical Magnetic Conductor Waveguide”, ternational Conference on Microwave Techniques, Pardubice (Czech Rep,): IEEE, 2019.10.1109/COMITE.2019.8733462 Search in Google Scholar

[13] M. Kokolia and Z. Raida, “Textile-Integrated Microwave Components Based on Artificial Magnetic Conductor”, ternational Journal of Numerical Modelling, vol. 34, no. 4, 2021.10.1002/jnm.2864 Search in Google Scholar

[14] H. Kou, Q. Tan, Y. Wang, G. Zhang, S. Shujing, and J. Xiong, “A Microwave SIW Sensor Loaded with CSRR for Wireless Pressure Detection in High–Temperature Environments”, Journal of Physics. D: Applied Physics, vol. 53, no. 8, pp, 85101, 2019.10.1088/1361-6463/ab58f2 Search in Google Scholar

[15] C. Arenas–Buendia, F. Gallee, A. Valero–Nogueira, and C. Person, “RF Sensor Based on Gap Waveguide Technology in LTCC for Liquid Sensing”, 9th European Conference on Antennas and Propagation, Lisbon vol., no. Portugal, IEEE, 2015. Search in Google Scholar

[16] U. H. Khan, B. Aslam, M. A. Azam, Y. Amin, and H. Tenhunen, “Compact RFID Enabled Moisture Sensor”, Radioengineering, vol. 25, no. 3, pp. 449–456, 2016.10.13164/re.2016.0449 Search in Google Scholar

[17] J. Naqui, M. Durn–Sindreu, and F. Martn, “Alignment and Position Sensors Based on Split Ring Resonators”, Sensors, vol. 12, no. 9, pp, 11790, 2012.10.3390/s120911790 Search in Google Scholar

[18] M. Sameer and P. Agarwal, “Coplanar Waveguide Microwave Sensor for Label–Free Real–Time Glucose Detection”, Radio-engineering, vol. 28, no. 2, pp. 491–495, 2019.10.13164/re.2019.0491 Search in Google Scholar

[19] M. Kokolia and Z. Raida, “Milimeter–Wave Propagation in 3D Knitted Fabrics”, 22nd International Microwave and Radar Conference, Poznan vol., no. Poland, IEEE, 2018.10.23919/MIKON.2018.8405319 Search in Google Scholar

[20] D. Elsheikh and A. R. Eldamak, “Microwave Textile Sensors for Breast Cancer Detection”, National Radio Science Conference, Mansoura vol., no. Egypt, IEEE, 2021.10.1109/NRSC52299.2021.9509829 Search in Google Scholar

[21] M. E. Gharbi, R. Fernndez–Garca, and I. Gil, “Textile Antenna–Sensor for In Vitro Diagnostics of Diabetes”, Electronics, vol. 10, no. 13, 2021.10.3390/electronics10131570 Search in Google Scholar

[22] F. Nikbakhtnasrabadi, H. E. Matbouly, M. Ntagios, and R. Dahiya, “Textile–Based Stretchable Microstrip Antenna with Intrinsic Strain Sensing”, ACS Applied Electronic Materials, vol. 3, no. 5, pp. 2233–2246, 2021. Search in Google Scholar

[23] M. E. Gharbi, M. Martinez–Estarada, R. Fernndez–Garca, and I. Gil, “Determination of Salinity and Sugar Concentration by Means of a Circular–Ring Monopole Textile Antenna–Based Sensor”, IEEE Sensors Journal, vol. 21, no. 21, pp. 23751–23760, 2021. Search in Google Scholar

[24] J. A. Toro, W. F. M. Granada, and S. M. Y. Zuluaga, “Design and Implementation of a Wearable Patch Antenna that Serves as a Longitudinal Strain Sensor”, Textile Research Journal, 2021. Search in Google Scholar

[25] M. Roudjane, S. Bellemare–Rousseau, E. Drouin, B. Belanger–Huot, M. A. Dugas, A. Miled, and Y. Messaddeq, “Smart T–Shirt Based on Wireless Communication Spiral Fiber Sensor Array for Real–Time Breath Monitoring: Validation of the Technology”, IEEE Sensors Journal, vol. 20, no. 18, pp. 10841–10850, 2020. Search in Google Scholar

[26] M. Roudjane, M. Khalil, H. Abed, A. Miled, and Y. Messaddeq, “Wearable Scanner Platform Based on Fiber Sensor Array for Real Time Breath Detection”, 18th IEEE International Conference on New Circuits and Systems, Montreal vol., no. Canada, IEEE, 2020.10.1109/NEWCAS49341.2020.9159827 Search in Google Scholar

[27] G. Atanasova and N. Atanasov, “Small Antennas for Wearable Sensor Networks: Impact of the Electromagnetic Properties of the Textiles on Antenna Performance”, Sensors, vol. 20, no. 18, pp. 1–21, 2020.10.3390/s20185157757087332927710 Search in Google Scholar

[28] S. Costanzo and V. Cio, “Preliminary SAR Analysis of Textile Antenna Sensor for Non–Invasive Blood–Glucose Monitoring”, Advances in Intelligent Systems and Computing, vol. 1137 AISC, pp. 607–612, 2020. Search in Google Scholar

[29] S. Ghosh, B. Nitin, S. Remanan, Y. Bhattacharjee, A. Ghorai, T. Dey, T. K. Das, and N. C. Das, “A Multifunctional Smart Textile Derived from Merino Wool/Nylon Polymer Nanocomposites as Next Generation Microwave Absorber and Soft Touch Sensor”, ACS Applied Materials and Interfaces, vol. 12, no. 15, pp. 17988–18001, 2020. Search in Google Scholar

[30] B. D. Wiltshire, K. Mirshahidi, A. V. Nadaraja, S. Shabanian, R. Hajiraissi, M. H. Zarifi, and K. Golovin, “Oleophobic Textiles with Embedded Liquid and Vapor Hazard Detection Using Differential Planar Microwave Resonators”, Journal of Hazardous Materials, vol. 409, 2021.10.1016/j.jhazmat.2020.12494533418298 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo