1. bookVolume 72 (2021): Edizione 1 (February 2021)
Dettagli della rivista
License
Formato
Rivista
eISSN
1339-309X
Prima pubblicazione
07 Jun 2011
Frequenza di pubblicazione
6 volte all'anno
Lingue
Inglese
Accesso libero

A single-layer metallo-dielectric superstructure for enhancing the performances of EBG cavity antenna

Pubblicato online: 18 Mar 2021
Volume & Edizione: Volume 72 (2021) - Edizione 1 (February 2021)
Pagine: 53 - 60
Ricevuto: 04 Sep 2020
Dettagli della rivista
License
Formato
Rivista
eISSN
1339-309X
Prima pubblicazione
07 Jun 2011
Frequenza di pubblicazione
6 volte all'anno
Lingue
Inglese

[1] D. Gangwar, S. Das, R. L. Yadava, and B. K. Kanaujia, “Circularly Polarized Inverted Stacked High Gain Antenna with Frequency Selective Surface”, Microwave and Optical Technology Letters, vol. 58, no. 3, pp. 732–740, 2016.10.1002/mop.29656 Search in Google Scholar

[2] Y. Li, R. Mittra, B. Zeng, G. Lu, Z. Li, J. Liu, C. W. Chen, and D. C. Chang, “Directivity Enhancement of Fabry-Perot Antenna by Using a Stepped-Dielectric Slab Superstrate”, Microwave and Optical Technology Letters, vol. 54, no. 3, pp. 711–715, 2012.10.1002/mop.26614 Search in Google Scholar

[3] B. P. Chacko, G. Augustin, and T. A. Denidni, “FPC Antennas, C-Band Point-to-Point Communication Systems”, IEEE Antennas and Propagation Magazine, vol. 58, no. 1, pp. 56–64, 2016.10.1109/MAP.2015.2501240 Search in Google Scholar

[4] J. Ju and J. L. Choi,“Broadband High Gain Fabry-Perot Cavity Antenna with Back Radiation Reduction”, Microwave and Optical Technology Letters, vol. 55, no. 5, pp. 975–978, 2013.10.1002/mop.27474 Search in Google Scholar

[5] R. M. Hashmi and K. P. Esselle,“A Wideband EBG Resonator Antenna with an Extremely Small Footprint Area”, Microwave and Optical Technology Letters, vol. 57, no. 7, pp. 1531–1535, 2015. Search in Google Scholar

[6] H. Boutayeb, K. Mahdjoubi, A. C. Tarot, and T. A. Denidni, “Directivity of an Antenna Embedded Inside a Fabry-Perot Cavity: Analysis and Design”, Microwave and Optical Technology Letters, vol. 48, no. 1, pp. 12–17, 2006.10.1002/mop.21249 Search in Google Scholar

[7] B. A. Zeb and K. P. Esselle, “High-Gain Dual Band Dual-Polarised Electromagnetic Band Gap Resonator Antenna with All-Dielectric Superstrcture”, IET Microwaves Antennas & Propagation, vol. 9, no. 10, pp. 1059–1065, 2015. Search in Google Scholar

[8] A. Chaabane, F. Djahli, H. Attia, and T. A. Denideni, “Radiation Bandwidth Improvement of Electromagnetic Band Gap Cavity Antenna”, Frequenz vol. 71, no. 5-6, pp. 243–249, 2018.10.1515/freq-2016-0205 Search in Google Scholar

[9] A. Pirhadi, M. Hakkak, F. Keshmiri, and R. K. Baee, “Design of Compact Dual Band High Directive Electromagnetic Bandgap (EBG) Resonator Antenna using Artificial Magnetic Conductor”, IEEE Transactions on Antennas and Propagation, vol. 55, no. 6, pp. 1682–1690, 2007. Search in Google Scholar

[10] H. Liu, S. Lei, X. Shi, and L. Li, “Study of Antenna Superstrates using Metamaterials for Directivity Enhancement Based on Fabry-Perot Resonant Cavity”, International Journal of Antennas and Propagation, vol. 2013, Article ID 209741, pp. 1–10, 2013. Search in Google Scholar

[11] A. R. Weily, T. S. Bird, and Y. J. Guo, “A Reconfigurable High-Gain Partially Reflecting Surface Antenna”, IEEE Transactions on Antennas and Propagation, vol. 56, no. 11, pp. 3382–3390, 2008. Search in Google Scholar

[12] M. L. Abdelghani, H. Attia, and T. A. Denidni, “Dual and Wide Band Fabry Pérot Resonator Antenna for WLAN Applications”, IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 473–476, 2016.10.1109/LAWP.2016.2585087 Search in Google Scholar

[13] Z. G. Liu, W. X. Zhang, D. L. Fu, Y. Y. Gu, and Z. Ge, “Broad-band Fabry-Perot Resonator Printed Antennas using FSS Super-strate with Dissimilar Size”, Microwave and Optical Technology Letters, vol. 50, no. 6, pp. 1623–1627, 2008. Search in Google Scholar

[14] K. Konstantinidis, A. P. Fresidis, and P. S. Hall, “Dual Sub-wavelength Fabry-Perot Cavities for Broadband Highly Directive Antennas”, IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1184–1186, 2014. Search in Google Scholar

[15] K. Konstantinidis, A. P. Fresidis, and P. S. Hall, “Dual-Slot Feeding Technique for Broadband Fabry Perot Cavity Antennas”, IET Microwaves Antennas & Propagation, vol. 9, no. 9, pp. 861–866, 2015.10.1049/iet-map.2014.0530 Search in Google Scholar

[16] K. Konstantinidis, A. P. Fresidis, and P. S. Hall, “Broad-band Sub-Wavelength Profile High Gain Antennas Based on Multi-Layer Metasurfaces”, IEEE Transactions on Antennas and Propagation, vol. 63, no. 1, pp. 423–427, 2015.10.1109/TAP.2014.2365825 Search in Google Scholar

[17] K. Konstantinidis, A. P. Fresidis, and P. S. Hall, “Multilayer Partially Reflective Surfaces for Broadband Fabry-Perot Cavity Antennas”, IEEE Transactions on Antennas and Propagation, vol. 62, no. 7, pp. 3474–3481, 2014. Search in Google Scholar

[18] N. Wang, J. Li, G. Wei, and L. Talbi, “Wideband Fabry-Perot Resonator Antenna with Two Layers of Dielectric Superstrates”, IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 229–232, 2014.10.1109/LAWP.2014.2360703 Search in Google Scholar

[19] F. Qin, S. Gao, G. Wei, and J. Xu, “Broadband Circularly Polarized Fabry-Perot Antenna Integrated with Wideband Phase Shifter for Satellite Communication”, Microwave and Optical Technology Letters, vol. 58, no. 5, pp. 1109–1113, 2016. Search in Google Scholar

[20] N. Wang, Q. Liu, C. Wu, L. Talbi, Q. Zeng, and J. Xu, “Wide-band Fabry-Perot Resonator Antenna with Two Complementary FSS Layers”, IEEE Transactions on Antennas and Propagation, vol. 62, no. 5, pp. 2463–2471, 2014. Search in Google Scholar

[21] CST Microwave Studio, “CST: Computer Simulation Technologies”, version 2015. Search in Google Scholar

[22] Z. L. Wang, K. Hashimoto, N. Shinohara, and H. Matsumoto, “Frequency-Selective Surface for Microwave Power Transmission”, IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 10, pp. 2039–2041, 1999. Search in Google Scholar

[23] A. Ebrahimi, S. Nirantar, W. Withayachumnankul, M. Bhaskaran, S. Sriram, S. F. Al Sarawi, and D. Abbott, “Second Order Terahertz Band Pass Frequency Selective Surface with Miniaturized Elements”, IEEE Transactions on Terahertz Science and Technology vol. 5, no. 5, pp. 761–769, 2015.10.1109/TTHZ.2015.2452813 Search in Google Scholar

[24] ADS Software, “ADS: Advanced Design System, Electronic Design Automation Software”, version 2015.01. Search in Google Scholar

[25] A. Chaabane, F. Djahli, H. Attia, L. M. Abdelghani, and T. A. Denideni, “Wideband and High-Gain EBG Resonator Antenna Based on Dual Layer PRS”, Microwave and Optical Technology Letters, vol. 59, no. 1, pp. 98–101, 2017.10.1002/mop.30227 Search in Google Scholar

[26] A. Chaabane, F. Djahli, H. Attia, and T. A. Denideni, “Antenna Radiation Bandwidth Broadening using Wideband Double-Layer Partially Reflective Surfaces”, IEEE 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM, Montreal, Canada, 10–13 July, 2016.10.1109/ANTEM.2016.7550151 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo