This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Dynkin, A.A. Science of foresight: how to succeed in strategic forecasting and planning/ A.A. Dynkin, V.D. Milovidov// Problems of Forecasting. - 2023. - No 3(198). - C. 6–23. DOI: 10.47711/0868-6351-198-6-23.DynkinA.A.Science of foresight: how to succeed in strategic forecasting and planningDynkinA.A.MilovidovV.D.Problems of Forecasting2023319862310.47711/0868-6351-198-6-23Open DOISearch in Google Scholar
Lazhentsev, V.N. Program-targeted resource mobilization/ V.N. Lazhentsev// Problems of forecasting. - 2023. - No 1(196). - C. 32–41. DOI: 10.47711/0868-6351-196-32-41.LazhentsevV.N.Program-targeted resource mobilizationLazhentsevV.N.Problems of forecasting20231196324110.47711/0868-6351-196-32-41Open DOISearch in Google Scholar
Modeling of development of the industrial complex of the Southern Federal District/ Makarenya, T.A. [et al.] - Ufa: Scientific and Publishing Center “Aeterna”, 2023. - 127 c.Modeling of development of the industrial complex of the Southern Federal DistrictMakarenyaT.A.UfaScientific and Publishing Center “Aeterna”2023127Search in Google Scholar
Blokhin, A.A. Global challenges for the system of strategic planning in Russia/ A.A. Blokhin, D.B. Kuvalin. Problems of forecasting. - 2023. - No 3(198). C. 24–41. DOI: 10.47711/0868-6351-198-24-41. (In Russia).BlokhinA.A.Global challenges for the system of strategic planning in RussiaBlokhinA.A.KuvalinD.B.Problems of forecasting20233198244110.47711/0868-6351-198-24-41(In Russia).Open DOISearch in Google Scholar
Kasparyants, D. Analysis of the artificial intelligence market in 2021. Scientific and Technical Center of FSUE “Main Radio Frequency Center”. 30.11.2021. URL: https://clck.ru/35cyFZ/.KasparyantsD.Analysis of the artificial intelligence market in 2021Scientific and Technical Center of FSUE “Main Radio Frequency Center”30112021URL: https://clck.ru/35cyFZ/.Search in Google Scholar
Official website of the federal service of state statistics. Mode of access: https://rosstat.gov.ru/Official website of the federal service of state statisticsMode of access: https://rosstat.gov.ru/Search in Google Scholar
Everette, S., Exponential smoothing: The state of the art/ S. Everette, Jr. Gardner// Journal of forecasting. – 1985 -T. 4. - No 1. - P. 1–28.EveretteS.Exponential smoothing: The state of the artEveretteS.GardnerJr.Journal of forecasting198541128Search in Google Scholar
Alvin C. Rencher. Methods of Multivariate Analysis. Wiley Series in Probability and Statistics/ Alvin C. Rencher, Christensen, William F.// Multivariate regression. Section 10.1. Introduction. - 2012 - Chapter 10, vol. 709.RencherAlvin C.Methods of Multivariate Analysis. Wiley Series in Probability and StatisticsRencherAlvin C.ChristensenWilliam F.Multivariate regression. Section 10.1. Introduction2012Chapter 10, vol. 709.Search in Google Scholar
Hamilton, J. Time Series Analysis/ J. Hamilton; Princeton University Press. -1994 - ISBN 9780691042893.HamiltonJ.Time Series AnalysisHamiltonJ.Princeton University Press1994ISBN 9780691042893.Search in Google Scholar
Chaudhary, K., Machine learning-based mathematical modelling for prediction of social media consumer behavior using big data analytics/ K. Chaudhary, M. Alam, A.S. Mabrook, A. Gumaei// Journal of Big Data. 8 (1) – 73 – 2021 doi:10.1186/s40537-021-00466-2. ISSN 2196-1115.ChaudharyK.Machine learning-based mathematical modelling for prediction of social media consumer behavior using big data analyticsChaudharyK.AlamM.MabrookA.S.GumaeiA.Journal of Big Data8173202110.1186/s40537-021-00466-2ISSN 2196-1115.Open DOISearch in Google Scholar
Winters, P. R. Forecasting Sales by Exponentially Weighted Moving Averages// Management Science. – 1960 - 6 (3). - 324–342. doi:10.1287/mnsc.6.3.324.WintersP. R.Forecasting Sales by Exponentially Weighted Moving AveragesManagement Science19606332434210.1287/mnsc.6.3.324Open DOISearch in Google Scholar
Hastie, T. The elements of statistical learning: data mining, inference, and prediction/ T. Hastie; New York: Springer. 2001. ISBN 0-387-95284-5. OCLC 46809224.HastieT.The elements of statistical learning: data mining, inference, and predictionHastieT.New YorkSpringer2001ISBN 0-387-95284-5. OCLC 46809224.Search in Google Scholar
Guerci, J.R. Space-Time Adaptive Processing for Radar/ J.R. Guerci - Artech House Publishers. - 2003. ISBN 1-58053-377-GuerciJ.R.Space-Time Adaptive Processing for RadarGuerciJ.R.Artech House Publishers2003ISBN 1-58053-377-Search in Google Scholar
Zhang, G.P. Neural Networks for Time-Series Forecasting/ Zhang, G.P. [and etc.]// In: Handbook of Natural Computing. Springer, Berlin, Heidelberg. – 2012. DOI: 10.1007/978-3-540-92910-9_14ZhangG.P.Neural Networks for Time-Series ForecastingZhangG.P.In:Handbook of Natural ComputingSpringerBerlin, Heidelberg201210.1007/978-3-540-92910-9_14Open DOISearch in Google Scholar
Etuk, Ette. An Additive SARIMA Model for Daily Exchange Rates of the Malaysian Ringgit (MYR) and Nigerian Naira (NGN)/ Ette Etuk. International Journal of Empirical Finance. – 2014 - 2(4). - vol. 2. - pages 193–201.EtukEtteAn Additive SARIMA Model for Daily Exchange Rates of the Malaysian Ringgit (MYR) and Nigerian Naira (NGN)EtukEtteInternational Journal of Empirical Finance201424vol. 2193201Search in Google Scholar
Time series forecasting with multiple candidate models: selecting or combining/[and etc.]// Yu, L. Journal of Systems Science and Complexity. – 2005. -18(1). - pp.1–18.Time series forecasting with multiple candidate models: selecting or combining[and etc.]YuL.Journal of Systems Science and Complexity2005181118Search in Google Scholar
Donnelly, J., Forecasting global climate drivers using Gaussian processes and convolutional auto-encoders/ J. Donnelly, A. Daneshkhah, S. Abolfathi// Engineering Applications of Artificial Intelligence. - Vol. 128. – 2024 - ISSN 0952-1976, DOI: 10.1016/j.engappai.2023.10753DonnellyJ.Forecasting global climate drivers using Gaussian processes and convolutional auto-encodersDonnellyJ.DaneshkhahA.AbolfathiS.Engineering Applications of Artificial Intelligence1282024ISSN 0952-1976,10.1016/j.engappai.2023.10753Open DOISearch in Google Scholar
Geweke, J. Chapter 1 Bayesian Forecasting/ J. Geweke, C. Whiteman// Handbook of Economic Forecasting. - Elsevier. – 2006 - Vol. 1. Pages 3–80. ISSN 1574-0706, ISBN 9780444513953. DOI: 10.1016/S1574-0706(05)01001-3.GewekeJ.Chapter 1 Bayesian ForecastingGewekeJ.WhitemanC.Handbook of Economic ForecastingElsevier20061380ISSN 1574-0706, ISBN 9780444513953.10.1016/S1574-0706(05)01001-3Open DOISearch in Google Scholar
Aksoy, N. Predictive models development using gradient boosting based methods for solar power plants/ N. Aksoy, I. Genc// Journal of Computational Science. Vol. 67. – 2023 - ISSN 1877-7503, DOI: 10.1016/j.jocs.2023.101958.AksoyN.Predictive models development using gradient boosting based methods for solar power plantsAksoyN.GencI.Journal of Computational Science672023ISSN 1877-7503,10.1016/j.jocs.2023.101958Open DOISearch in Google Scholar
Grossman, I./ I. Grossman, Wilson T., J. Temple// Forecasting small area populations with long short-term memory networks. - Socio-Economic Planning Sciences. - 2023. - Vol. 88. ISSN 0038-0121, DOI: 10.1016/j.seps.2023.101658GrossmanI.GrossmanI.WilsonT.TempleJ.Forecasting small area populations with long short-term memory networksSocio-Economic Planning Sciences202388ISSN 0038-0121,10.1016/j.seps.2023.101658Open DOISearch in Google Scholar
Bach, F. R. Learning Graphical Models for Stationary Time Series/ F. R. Bach, M. I. Jordan// Ieee transactions on signal processing’s. - 2004. - VOL. 52. - NO. 8. - pages 2189–2199.BachF. R.Learning Graphical Models for Stationary Time SeriesBachF. R.JordanM. I.Ieee transactions on signal processing’s200452821892199Search in Google Scholar
Nowotarski, J. Computing electricity spot price prediction intervals using quantile regression and forecast averaging/ J. Nowotarski, R. Weron// Computational Statistics. – 2015. - 30 (3). 791–803. doi:10.1007/s00180-014-0523-0. ISSN 0943-4062.NowotarskiJ.Computing electricity spot price prediction intervals using quantile regression and forecast averagingNowotarskiJ.WeronR.Computational Statistics201530379180310.1007/s00180-014-0523-0ISSN 0943-4062.Open DOISearch in Google Scholar
Seawright, J. The Case for Selecting Cases That Are Deviant or Extreme on the Independent Variable/J. Seawright, Sociological Methods & Research, 2016 45(3). - 493–525. DOI: 10.1177/0049124116643556SeawrightJ.The Case for Selecting Cases That Are Deviant or Extreme on the Independent VariableSeawrightJ.Sociological Methods & Research201645349352510.1177/0049124116643556Open DOISearch in Google Scholar
Decomposition forecasting methods: A review of applications in power systems/ N. Mbuli [and etc.]// Energy Reports. – 2020 - Vol. 6. Supp. 9. Pages 298–306, ISSN 2352-4847. DOI: 10.1016/j.egyr.2020.11.238Decomposition forecasting methods: A review of applications in power systemsMbuliN.Energy Reports20206Supp. 9298306ISSN 2352-4847.10.1016/j.egyr.2020.11.238Open DOISearch in Google Scholar
Jin, M., Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection/ Jin M., Koh H.Y., Wen Q. A.// JOURNAL OF LATEX CLASS FILES. – 2021. - VOL. 14. - NO. 8. DOI: 10.48550/arXiv.2307.03759.JinM.Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly DetectionJinM.KohH.Y.WenQ. A.JOURNAL OF LATEX CLASS FILES202114810.48550/arXiv.2307.03759Open DOISearch in Google Scholar
Nguyen, N. Temporal Latent Auto-Encoder: A Method for Probabilistic Multivariate Time Series Forecasting/ N. Nguyen, Quanz B.// Proceedings of the AAAI. Conference on Artificial Intelligence. 35. -2021. - 9117–9125. 10.1609/aaai.v35i10.17101.NguyenN.Temporal Latent Auto-Encoder: A Method for Probabilistic Multivariate Time Series ForecastingNguyenN.QuanzB.Proceedings of the AAAI. Conference on Artificial Intelligence3520219117912510.1609/aaai.v35i10.17101Open DOISearch in Google Scholar
Gorodnova, N.V. Modeling the development and implementation of systems of “weak” and “strong” artificial intelligence: socio-economic aspects/ N.V. Gorodnova// Voprosy innovatsionnymi ekonomiki.-2022. - T. 12. - No 1. - C. 123–140. DOI: 10.18334/vinec.12.1.113717.GorodnovaN.V.Modeling the development and implementation of systems of “weak” and “strong” artificial intelligence: socio-economic aspectsGorodnovaN.V.Voprosy innovatsionnymi ekonomiki202212112314010.18334/vinec.12.1.113717Open DOISearch in Google Scholar
Fahle, S. Systematic review on machine learning (ML) methods for manufacturing processes–Identifying artificial intelligence (AI) methods for field application/S. Fahle, C. Prinz, B. Kuhlenkötter// Procedia CIRP. – 2020 - 93. pp. 413–418.FahleS.Systematic review on machine learning (ML) methods for manufacturing processes–Identifying artificial intelligence (AI) methods for field applicationFahleS.PrinzC.KuhlenkötterB.Procedia CIRP202093413418Search in Google Scholar
Apurvanand, S. Integration of Prophet Model and Convolution Neural Network on Wikipedia Trend Data/S. Apurvanand, J. Amudha// Journal of Computational and Theoretical Nanoscience. 17. – 2020. - pages 260–266. 10.1166/jctn.2020.8660.ApurvanandS.Integration of Prophet Model and Convolution Neural Network on Wikipedia Trend DataApurvanandS.AmudhaJ.Journal of Computational and Theoretical Nanoscience17202026026610.1166/jctn.2020.8660Open DOISearch in Google Scholar
Effective domestic practices based on artificial intelligence technologies in the manufacturing industry. Analytical report. ANO “Digital Economy”. 2022. URL: https://clck.ru/35cx4s.Effective domestic practices based on artificial intelligence technologies in the manufacturing industryAnalytical report.ANO “Digital Economy”2022URL: https://clck.ru/35cx4s.Search in Google Scholar
News site. - Access mode: https://nauka.tass.ru/nauka/19908027. (In Russia).News site- Access mode: https://nauka.tass.ru/nauka/19908027. (In Russia).Search in Google Scholar
Predictive Maintenance of Machine Tool Systems Using Artificial Intelligence Techniques Applied to Machine Condition Data/ W.J. Lee [and etc.]// Procedia CIRP. – 2019. pp. 506–511.Predictive Maintenance of Machine Tool Systems Using Artificial Intelligence Techniques Applied to Machine Condition DataLeeW.J.Procedia CIRP2019506511Search in Google Scholar
A survey on artificial intelligence in Chinese sign language recognition/ X. Jiang [and etc.]// Arabian J. Sci. – 2020 - Eng. 45. pp. 9859–9894.A survey on artificial intelligence in Chinese sign language recognitionJiangX.Arabian J. Sci. Eng.20204598599894Search in Google Scholar
Artificial Intelligence Methodologies for Data Management/ Serey, J. [and etc.]// Symmetry. – 2021. - 13. - 2040. DOI: 10.3390/sym13112040Artificial Intelligence Methodologies for Data ManagementSereyJ.Symmetry202113204010.3390/sym13112040Open DOISearch in Google Scholar
He, S. Artificial intelligence and machine learning assisted drug delivery for effective treatment of infectious diseases/ S. He, L.G. Leanse, Y. Feng// Adv. Drug Deliv. – 2021 - Rev. 178. Article 113922.HeS.Artificial intelligence and machine learning assisted drug delivery for effective treatment of infectious diseasesHeS.LeanseL.G.FengY.Adv. Drug Deliv. Rev.2021178Article 113922.Search in Google Scholar
Wasilow, S. Artificial intelligence, robotics, ethics, and the military: a Canadian perspective/ S. Wasilow, J.B. Thorpe// AI Magazine. – 2019. – 40.pp. 37–48.WasilowS.Artificial intelligence, robotics, ethics, and the military: a Canadian perspectiveWasilowS.ThorpeJ.B.AI Magazine2019403748Search in Google Scholar
Data-driven artificial intelligence applications for sustainable precision agriculture/ M.T. Linaza [and etc.]// Agronomy. – 2021 - 11. - p. 1227.Data-driven artificial intelligence applications for sustainable precision agricultureLinazaM.T.Agronomy2021111227Search in Google Scholar
Belk, R. Ethical issues in service robotics and artificial intelligence./ R. Belk// Serv. Ind. - 2021.- 41. -pp. 860–876.BelkR.Ethical issues in service robotics and artificial intelligenceBelkR.Serv. Ind.202141860876Search in Google Scholar
Sako, K. Neural Networks for Financial Time Mpinda/ K. Sako, PC. Rodrigues// Series Forecasting. Entropy (Basel). – 2022 - May 7. - 24(5). - 657. doi: 10.3390/e24050657. PMID: 35626542. PMCID: PMC9141105.SakoK.Neural Networks for Financial Time MpindaSakoK.RodriguesPC.Series Forecasting. Entropy (Basel).2022May724565710.3390/e2405065735626542PMC9141105Open DOISearch in Google Scholar
Ekhlakov, R.S. Forecasting the cost of quotes using LSTM and GRU networks/ R.S. Ekhlakov, V.A. Sudakov// Preprints of M.V. Keldysh IPM. - 2022. - No 17. 13 c. DOI: 10.20948/prepr-2022-17https://library.keldysh.ru/preprint.asp?id=2022-17.EkhlakovR.S.Forecasting the cost of quotes using LSTM and GRU networksEkhlakovR.S.SudakovV.A.Preprints of M.V. Keldysh IPM.2022171310.20948/prepr-2022-17https://library.keldysh.ru/preprint.asp?id=2022-17.Open DOISearch in Google Scholar
Artificial intelligence and the future of surgical robotics/ Panesar, S. [and etc.]// Ann. Surg. – 2019. -270. pp. 223–226.Artificial intelligence and the future of surgical roboticsPanesarS.Ann. Surg.2019270223226Search in Google Scholar
Ganascia, J.-G. Artificial intelligence: between myth and reality/ J.-G. Ganascia// The UNESCO Courier. – 2018. - No. 3. URL: https://clck.ru/35cxVw.GanasciaJ.-G.Artificial intelligence: between myth and realityGanasciaJ.-G.The UNESCO Courier2018No. 3. URL: https://clck.ru/35cxVw.Search in Google Scholar
Vorontsova, I.V. The definition of “artificial intelligence” and its semantic-procedural meaning in the judicial system of Russia and foreign countries/ I.V. Vorontsova, Y.A. Lukonina// Russian judge. - 2020. - No 10. - C. 41–45. Doi: 10.18572/1812-3791-2020-10-41-45.VorontsovaI.V.The definition of “artificial intelligence” and its semantic-procedural meaning in the judicial system of Russia and foreign countriesVorontsovaI.V.LukoninaY.A.Russian judge202010414510.18572/1812-3791-2020-10-41-45Open DOISearch in Google Scholar
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcastin/ Xingjian Shi [and etc.]// (or arXiv:1506.04214v2 [cs.CV] for this version). -2015. – 13. DOI: 10.48550/arXiv.1506.04214.Convolutional LSTM NetworkA Machine Learning Approach for Precipitation NowcastinShiXingjian(or arXiv:1506.04214v2 [cs.CV] for this version).20151310.48550/arXiv.1506.04214Open DOISearch in Google Scholar
Ho, T.K. The Random Subspace Method for Constructing Decision Forests (PDF)/ T.K. Ho// IEEE Transactions on Pattern Analysis and Machine Intelligence. – 1998 - 20 (8): 832–844.HoT.K.The Random Subspace Method for Constructing Decision Forests (PDF)HoT.K.IEEE Transactions on Pattern Analysis and Machine Intelligence1998208832844Search in Google Scholar