Uneingeschränkter Zugang

Problems of forecasting output

, ,  und   
27. März 2025

Zitieren
COVER HERUNTERLADEN

Dynkin, A.A. Science of foresight: how to succeed in strategic forecasting and planning/ A.A. Dynkin, V.D. Milovidov// Problems of Forecasting. - 2023. - No 3(198). - C. 6–23. DOI: 10.47711/0868-6351-198-6-23. DynkinA.A. Science of foresight: how to succeed in strategic forecasting and planning DynkinA.A. MilovidovV.D. Problems of Forecasting 2023 3 198 6 23 10.47711/0868-6351-198-6-23 Open DOISearch in Google Scholar

Lazhentsev, V.N. Program-targeted resource mobilization/ V.N. Lazhentsev// Problems of forecasting. - 2023. - No 1(196). - C. 32–41. DOI: 10.47711/0868-6351-196-32-41. LazhentsevV.N. Program-targeted resource mobilization LazhentsevV.N. Problems of forecasting 2023 1 196 32 41 10.47711/0868-6351-196-32-41 Open DOISearch in Google Scholar

Modeling of development of the industrial complex of the Southern Federal District/ Makarenya, T.A. [et al.] - Ufa: Scientific and Publishing Center “Aeterna”, 2023. - 127 c. Modeling of development of the industrial complex of the Southern Federal District MakarenyaT.A. Ufa Scientific and Publishing Center “Aeterna” 2023 127 Search in Google Scholar

Blokhin, A.A. Global challenges for the system of strategic planning in Russia/ A.A. Blokhin, D.B. Kuvalin. Problems of forecasting. - 2023. - No 3(198). C. 24–41. DOI: 10.47711/0868-6351-198-24-41. (In Russia). BlokhinA.A. Global challenges for the system of strategic planning in Russia BlokhinA.A. KuvalinD.B. Problems of forecasting 2023 3 198 24 41 10.47711/0868-6351-198-24-41 (In Russia). Open DOISearch in Google Scholar

Kasparyants, D. Analysis of the artificial intelligence market in 2021. Scientific and Technical Center of FSUE “Main Radio Frequency Center”. 30.11.2021. URL: https://clck.ru/35cyFZ/. KasparyantsD. Analysis of the artificial intelligence market in 2021 Scientific and Technical Center of FSUE “Main Radio Frequency Center” 30 11 2021 URL: https://clck.ru/35cyFZ/. Search in Google Scholar

Official website of the federal service of state statistics. Mode of access: https://rosstat.gov.ru/ Official website of the federal service of state statistics Mode of access: https://rosstat.gov.ru/ Search in Google Scholar

Everette, S., Exponential smoothing: The state of the art/ S. Everette, Jr. Gardner// Journal of forecasting. – 1985 -T. 4. - No 1. - P. 1–28. EveretteS. Exponential smoothing: The state of the art EveretteS. GardnerJr. Journal of forecasting 1985 4 1 1 28 Search in Google Scholar

Alvin C. Rencher. Methods of Multivariate Analysis. Wiley Series in Probability and Statistics/ Alvin C. Rencher, Christensen, William F.// Multivariate regression. Section 10.1. Introduction. - 2012 - Chapter 10, vol. 709. RencherAlvin C. Methods of Multivariate Analysis. Wiley Series in Probability and Statistics RencherAlvin C. ChristensenWilliam F. Multivariate regression. Section 10.1. Introduction 2012 Chapter 10, vol. 709. Search in Google Scholar

Hamilton, J. Time Series Analysis/ J. Hamilton; Princeton University Press. -1994 - ISBN 9780691042893. HamiltonJ. Time Series Analysis HamiltonJ. Princeton University Press 1994 ISBN 9780691042893. Search in Google Scholar

Chaudhary, K., Machine learning-based mathematical modelling for prediction of social media consumer behavior using big data analytics/ K. Chaudhary, M. Alam, A.S. Mabrook, A. Gumaei// Journal of Big Data. 8 (1) – 73 – 2021 doi:10.1186/s40537-021-00466-2. ISSN 2196-1115. ChaudharyK. Machine learning-based mathematical modelling for prediction of social media consumer behavior using big data analytics ChaudharyK. AlamM. MabrookA.S. GumaeiA. Journal of Big Data 8 1 73 2021 10.1186/s40537-021-00466-2 ISSN 2196-1115. Open DOISearch in Google Scholar

Winters, P. R. Forecasting Sales by Exponentially Weighted Moving Averages// Management Science. – 1960 - 6 (3). - 324–342. doi:10.1287/mnsc.6.3.324. WintersP. R. Forecasting Sales by Exponentially Weighted Moving Averages Management Science 1960 6 3 324 342 10.1287/mnsc.6.3.324 Open DOISearch in Google Scholar

Hastie, T. The elements of statistical learning: data mining, inference, and prediction/ T. Hastie; New York: Springer. 2001. ISBN 0-387-95284-5. OCLC 46809224. HastieT. The elements of statistical learning: data mining, inference, and prediction HastieT. New York Springer 2001 ISBN 0-387-95284-5. OCLC 46809224. Search in Google Scholar

Guerci, J.R. Space-Time Adaptive Processing for Radar/ J.R. Guerci - Artech House Publishers. - 2003. ISBN 1-58053-377- GuerciJ.R. Space-Time Adaptive Processing for Radar GuerciJ.R. Artech House Publishers 2003 ISBN 1-58053-377- Search in Google Scholar

Zhang, G.P. Neural Networks for Time-Series Forecasting/ Zhang, G.P. [and etc.]// In: Handbook of Natural Computing. Springer, Berlin, Heidelberg. – 2012. DOI: 10.1007/978-3-540-92910-9_14 ZhangG.P. Neural Networks for Time-Series Forecasting ZhangG.P. In: Handbook of Natural Computing Springer Berlin, Heidelberg 2012 10.1007/978-3-540-92910-9_14 Open DOISearch in Google Scholar

Etuk, Ette. An Additive SARIMA Model for Daily Exchange Rates of the Malaysian Ringgit (MYR) and Nigerian Naira (NGN)/ Ette Etuk. International Journal of Empirical Finance. – 2014 - 2(4). - vol. 2. - pages 193–201. EtukEtte An Additive SARIMA Model for Daily Exchange Rates of the Malaysian Ringgit (MYR) and Nigerian Naira (NGN) EtukEtte International Journal of Empirical Finance 2014 2 4 vol. 2 193 201 Search in Google Scholar

Time series forecasting with multiple candidate models: selecting or combining/[and etc.]// Yu, L. Journal of Systems Science and Complexity. – 2005. -18(1). - pp.1–18. Time series forecasting with multiple candidate models: selecting or combining [and etc.] YuL. Journal of Systems Science and Complexity 2005 18 1 1 18 Search in Google Scholar

Donnelly, J., Forecasting global climate drivers using Gaussian processes and convolutional auto-encoders/ J. Donnelly, A. Daneshkhah, S. Abolfathi// Engineering Applications of Artificial Intelligence. - Vol. 128. – 2024 - ISSN 0952-1976, DOI: 10.1016/j.engappai.2023.10753 DonnellyJ. Forecasting global climate drivers using Gaussian processes and convolutional auto-encoders DonnellyJ. DaneshkhahA. AbolfathiS. Engineering Applications of Artificial Intelligence 128 2024 ISSN 0952-1976, 10.1016/j.engappai.2023.10753 Open DOISearch in Google Scholar

Geweke, J. Chapter 1 Bayesian Forecasting/ J. Geweke, C. Whiteman// Handbook of Economic Forecasting. - Elsevier. – 2006 - Vol. 1. Pages 3–80. ISSN 1574-0706, ISBN 9780444513953. DOI: 10.1016/S1574-0706(05)01001-3. GewekeJ. Chapter 1 Bayesian Forecasting GewekeJ. WhitemanC. Handbook of Economic Forecasting Elsevier 2006 1 3 80 ISSN 1574-0706, ISBN 9780444513953. 10.1016/S1574-0706(05)01001-3 Open DOISearch in Google Scholar

Aksoy, N. Predictive models development using gradient boosting based methods for solar power plants/ N. Aksoy, I. Genc// Journal of Computational Science. Vol. 67. – 2023 - ISSN 1877-7503, DOI: 10.1016/j.jocs.2023.101958. AksoyN. Predictive models development using gradient boosting based methods for solar power plants AksoyN. GencI. Journal of Computational Science 67 2023 ISSN 1877-7503, 10.1016/j.jocs.2023.101958 Open DOISearch in Google Scholar

Grossman, I./ I. Grossman, Wilson T., J. Temple// Forecasting small area populations with long short-term memory networks. - Socio-Economic Planning Sciences. - 2023. - Vol. 88. ISSN 0038-0121, DOI: 10.1016/j.seps.2023.101658 GrossmanI. GrossmanI. WilsonT. TempleJ. Forecasting small area populations with long short-term memory networks Socio-Economic Planning Sciences 2023 88 ISSN 0038-0121, 10.1016/j.seps.2023.101658 Open DOISearch in Google Scholar

Bach, F. R. Learning Graphical Models for Stationary Time Series/ F. R. Bach, M. I. Jordan// Ieee transactions on signal processing’s. - 2004. - VOL. 52. - NO. 8. - pages 2189–2199. BachF. R. Learning Graphical Models for Stationary Time Series BachF. R. JordanM. I. Ieee transactions on signal processing’s 2004 52 8 2189 2199 Search in Google Scholar

Nowotarski, J. Computing electricity spot price prediction intervals using quantile regression and forecast averaging/ J. Nowotarski, R. Weron// Computational Statistics. – 2015. - 30 (3). 791–803. doi:10.1007/s00180-014-0523-0. ISSN 0943-4062. NowotarskiJ. Computing electricity spot price prediction intervals using quantile regression and forecast averaging NowotarskiJ. WeronR. Computational Statistics 2015 30 3 791 803 10.1007/s00180-014-0523-0 ISSN 0943-4062. Open DOISearch in Google Scholar

Seawright, J. The Case for Selecting Cases That Are Deviant or Extreme on the Independent Variable/J. Seawright, Sociological Methods & Research, 2016 45(3). - 493–525. DOI: 10.1177/0049124116643556 SeawrightJ. The Case for Selecting Cases That Are Deviant or Extreme on the Independent Variable SeawrightJ. Sociological Methods & Research 2016 45 3 493 525 10.1177/0049124116643556 Open DOISearch in Google Scholar

Decomposition forecasting methods: A review of applications in power systems/ N. Mbuli [and etc.]// Energy Reports. – 2020 - Vol. 6. Supp. 9. Pages 298–306, ISSN 2352-4847. DOI: 10.1016/j.egyr.2020.11.238 Decomposition forecasting methods: A review of applications in power systems MbuliN. Energy Reports 2020 6 Supp. 9 298 306 ISSN 2352-4847. 10.1016/j.egyr.2020.11.238 Open DOISearch in Google Scholar

Jin, M., Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection/ Jin M., Koh H.Y., Wen Q. A.// JOURNAL OF LATEX CLASS FILES. – 2021. - VOL. 14. - NO. 8. DOI: 10.48550/arXiv.2307.03759. JinM. Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection JinM. KohH.Y. WenQ. A. JOURNAL OF LATEX CLASS FILES 2021 14 8 10.48550/arXiv.2307.03759 Open DOISearch in Google Scholar

Nguyen, N. Temporal Latent Auto-Encoder: A Method for Probabilistic Multivariate Time Series Forecasting/ N. Nguyen, Quanz B.// Proceedings of the AAAI. Conference on Artificial Intelligence. 35. -2021. - 9117–9125. 10.1609/aaai.v35i10.17101. NguyenN. Temporal Latent Auto-Encoder: A Method for Probabilistic Multivariate Time Series Forecasting NguyenN. QuanzB. Proceedings of the AAAI. Conference on Artificial Intelligence 35 2021 9117 9125 10.1609/aaai.v35i10.17101 Open DOISearch in Google Scholar

Gorodnova, N.V. Modeling the development and implementation of systems of “weak” and “strong” artificial intelligence: socio-economic aspects/ N.V. Gorodnova// Voprosy innovatsionnymi ekonomiki.-2022. - T. 12. - No 1. - C. 123–140. DOI: 10.18334/vinec.12.1.113717. GorodnovaN.V. Modeling the development and implementation of systems of “weak” and “strong” artificial intelligence: socio-economic aspects GorodnovaN.V. Voprosy innovatsionnymi ekonomiki 2022 12 1 123 140 10.18334/vinec.12.1.113717 Open DOISearch in Google Scholar

Fahle, S. Systematic review on machine learning (ML) methods for manufacturing processes–Identifying artificial intelligence (AI) methods for field application/S. Fahle, C. Prinz, B. Kuhlenkötter// Procedia CIRP. – 2020 - 93. pp. 413–418. FahleS. Systematic review on machine learning (ML) methods for manufacturing processes–Identifying artificial intelligence (AI) methods for field application FahleS. PrinzC. KuhlenkötterB. Procedia CIRP 2020 93 413 418 Search in Google Scholar

Apurvanand, S. Integration of Prophet Model and Convolution Neural Network on Wikipedia Trend Data/S. Apurvanand, J. Amudha// Journal of Computational and Theoretical Nanoscience. 17. – 2020. - pages 260–266. 10.1166/jctn.2020.8660. ApurvanandS. Integration of Prophet Model and Convolution Neural Network on Wikipedia Trend Data ApurvanandS. AmudhaJ. Journal of Computational and Theoretical Nanoscience 17 2020 260 266 10.1166/jctn.2020.8660 Open DOISearch in Google Scholar

Effective domestic practices based on artificial intelligence technologies in the manufacturing industry. Analytical report. ANO “Digital Economy”. 2022. URL: https://clck.ru/35cx4s. Effective domestic practices based on artificial intelligence technologies in the manufacturing industry Analytical report. ANO “Digital Economy” 2022 URL: https://clck.ru/35cx4s. Search in Google Scholar

News site. - Access mode: https://nauka.tass.ru/nauka/19908027. (In Russia). News site - Access mode: https://nauka.tass.ru/nauka/19908027. (In Russia). Search in Google Scholar

Predictive Maintenance of Machine Tool Systems Using Artificial Intelligence Techniques Applied to Machine Condition Data/ W.J. Lee [and etc.]// Procedia CIRP. – 2019. pp. 506–511. Predictive Maintenance of Machine Tool Systems Using Artificial Intelligence Techniques Applied to Machine Condition Data LeeW.J. Procedia CIRP 2019 506 511 Search in Google Scholar

A survey on artificial intelligence in Chinese sign language recognition/ X. Jiang [and etc.]// Arabian J. Sci. – 2020 - Eng. 45. pp. 9859–9894. A survey on artificial intelligence in Chinese sign language recognition JiangX. Arabian J. Sci. Eng. 2020 45 9859 9894 Search in Google Scholar

Artificial Intelligence Methodologies for Data Management/ Serey, J. [and etc.]// Symmetry. – 2021. - 13. - 2040. DOI: 10.3390/sym13112040 Artificial Intelligence Methodologies for Data Management SereyJ. Symmetry 2021 13 2040 10.3390/sym13112040 Open DOISearch in Google Scholar

He, S. Artificial intelligence and machine learning assisted drug delivery for effective treatment of infectious diseases/ S. He, L.G. Leanse, Y. Feng// Adv. Drug Deliv. – 2021 - Rev. 178. Article 113922. HeS. Artificial intelligence and machine learning assisted drug delivery for effective treatment of infectious diseases HeS. LeanseL.G. FengY. Adv. Drug Deliv. Rev. 2021 178 Article 113922. Search in Google Scholar

Wasilow, S. Artificial intelligence, robotics, ethics, and the military: a Canadian perspective/ S. Wasilow, J.B. Thorpe// AI Magazine. – 2019. – 40.pp. 37–48. WasilowS. Artificial intelligence, robotics, ethics, and the military: a Canadian perspective WasilowS. ThorpeJ.B. AI Magazine 2019 40 37 48 Search in Google Scholar

Data-driven artificial intelligence applications for sustainable precision agriculture/ M.T. Linaza [and etc.]// Agronomy. – 2021 - 11. - p. 1227. Data-driven artificial intelligence applications for sustainable precision agriculture LinazaM.T. Agronomy 2021 11 1227 Search in Google Scholar

Belk, R. Ethical issues in service robotics and artificial intelligence./ R. Belk// Serv. Ind. - 2021.- 41. -pp. 860–876. BelkR. Ethical issues in service robotics and artificial intelligence BelkR. Serv. Ind. 2021 41 860 876 Search in Google Scholar

Sako, K. Neural Networks for Financial Time Mpinda/ K. Sako, PC. Rodrigues// Series Forecasting. Entropy (Basel). – 2022 - May 7. - 24(5). - 657. doi: 10.3390/e24050657. PMID: 35626542. PMCID: PMC9141105. SakoK. Neural Networks for Financial Time Mpinda SakoK. RodriguesPC. Series Forecasting. Entropy (Basel). 2022 May 7 24 5 657 10.3390/e24050657 35626542 PMC9141105 Open DOISearch in Google Scholar

Ekhlakov, R.S. Forecasting the cost of quotes using LSTM and GRU networks/ R.S. Ekhlakov, V.A. Sudakov// Preprints of M.V. Keldysh IPM. - 2022. - No 17. 13 c. DOI: 10.20948/prepr-2022-17 https://library.keldysh.ru/preprint.asp?id=2022-17. EkhlakovR.S. Forecasting the cost of quotes using LSTM and GRU networks EkhlakovR.S. SudakovV.A. Preprints of M.V. Keldysh IPM. 2022 17 13 10.20948/prepr-2022-17 https://library.keldysh.ru/preprint.asp?id=2022-17. Open DOISearch in Google Scholar

Artificial intelligence and the future of surgical robotics/ Panesar, S. [and etc.]// Ann. Surg. – 2019. -270. pp. 223–226. Artificial intelligence and the future of surgical robotics PanesarS. Ann. Surg. 2019 270 223 226 Search in Google Scholar

Ganascia, J.-G. Artificial intelligence: between myth and reality/ J.-G. Ganascia// The UNESCO Courier. – 2018. - No. 3. URL: https://clck.ru/35cxVw. GanasciaJ.-G. Artificial intelligence: between myth and reality GanasciaJ.-G. The UNESCO Courier 2018 No. 3. URL: https://clck.ru/35cxVw. Search in Google Scholar

Vorontsova, I.V. The definition of “artificial intelligence” and its semantic-procedural meaning in the judicial system of Russia and foreign countries/ I.V. Vorontsova, Y.A. Lukonina// Russian judge. - 2020. - No 10. - C. 41–45. Doi: 10.18572/1812-3791-2020-10-41-45. VorontsovaI.V. The definition of “artificial intelligence” and its semantic-procedural meaning in the judicial system of Russia and foreign countries VorontsovaI.V. LukoninaY.A. Russian judge 2020 10 41 45 10.18572/1812-3791-2020-10-41-45 Open DOISearch in Google Scholar

Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcastin/ Xingjian Shi [and etc.]// (or arXiv:1506.04214v2 [cs.CV] for this version). -2015. – 13. DOI: 10.48550/arXiv.1506.04214. Convolutional LSTM Network A Machine Learning Approach for Precipitation Nowcastin ShiXingjian (or arXiv:1506.04214v2 [cs.CV] for this version). 2015 13 10.48550/arXiv.1506.04214 Open DOISearch in Google Scholar

Ho, T.K. The Random Subspace Method for Constructing Decision Forests (PDF)/ T.K. Ho// IEEE Transactions on Pattern Analysis and Machine Intelligence. – 1998 - 20 (8): 832–844. HoT.K. The Random Subspace Method for Constructing Decision Forests (PDF) HoT.K. IEEE Transactions on Pattern Analysis and Machine Intelligence 1998 20 8 832 844 Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
1 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, Technik, andere