1. bookVolume 40 (2018): Edizione 2 (July 2018)
Dettagli della rivista
Prima pubblicazione
12 Apr 2017
Frequenza di pubblicazione
3 volte all'anno
Inglese, Tedesco
Accesso libero

Hier bin Ich: Wo bist Du?

Pubblicato online: 17 Jul 2018
Volume & Edizione: Volume 40 (2018) - Edizione 2 (July 2018)
Pagine: 189 - 205
Dettagli della rivista
Prima pubblicazione
12 Apr 2017
Frequenza di pubblicazione
3 volte all'anno
Inglese, Tedesco

Aguiar, A., & Baillargeon, R. (1999). 2.5-month-old infants’ reasoning about when objects should and should not be occluded. Cognitive Psychology, 39, 116–157.10.1006/cogp.1999.0717Search in Google Scholar

Baillargeon, R. (2004). Infants’ physical world. Current Directions in Psychological Science, 13(3), 89–94.10.1111/j.0963-7214.2004.00281.xSearch in Google Scholar

Baiocchi, V., & Chiandetti, C. (2016). Chicks run harder toward a consonant over a dissonant clucking hen: Biological roots for the appreciation of consonant sounds. In Trieste Symposium on Perception and Cognition, Trieste, Italy, November 4, P03.Search in Google Scholar

Bateson, P. P. G. (1964a). Effect of similarity between rearing and testing conditions on chicks’ following and avoidance responses. Journal of Comparative and Physiological Psychology, 57(1), 100–103.10.1037/h0043000Search in Google Scholar

Bateson, P. P. G. (1964b). Changes in chicks’ responses to novel moving objects over the sensitive period for imprinting. Animal Behaviour, 7(4), 479–489.10.1016/0003-3472(64)90068-5Search in Google Scholar

Bateson, P. P. G. (1990). Is imprinting such a special case? Philosophical Transactions of the Royal Society of London B, 329, 125–131.10.1098/rstb.1990.0157Search in Google Scholar

Bateson, P. P. G., Horn, G., & Rose, S. P. R. (1973). Imprinting: Lasting effects on Uracil incorporation into chick brain. Science, 181, 576–578.10.1126/science.181.4099.5764721056Search in Google Scholar

Bird, C. D., & Emery, N. J. (2010). Rooks perceive support relations similar to six-month-old babies. Proceedings of the Royal Society of London B: Biological Sciences, 277, 147–151.10.1098/rspb.2009.1456284262719812083Search in Google Scholar

Bolhuis, J. J. (1991). Mechanisms of avian imprinting: A review. Biological Reviews, 66(4), 303–345.10.1111/j.1469-185X.1991.tb01145.xSearch in Google Scholar

Bolhuis, J. J., de Vos, G. J., & Kruijt, J. P. (1990). Filial imprinting and associative learning. The Quarterly Journal of Experimental Psychology, 42(3), 313–329.Search in Google Scholar

Bowling, D. L., & Purves, D. (2015). A biological rationale for musical consonance. Proceedings of the National Academy of Sciences of the United States of America, 112(36), 11155–11160.10.1073/pnas.1505768112456868026209651Search in Google Scholar

Bozzi, P. (1990). Fisica ingenua. Oscillazioni, piani inclinati e altre storie: studi di psicologia della percezione. Milano, Italy: Garzanti.Search in Google Scholar

Cacchione, T., & Krist, H. (2004). Recognizing impossible object relations: Intuitions about support in chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 118, 140–148.10.1037/0735-7036.118.2.14015250801Search in Google Scholar

Call, J. (2007). Apes know that hidden objects can affect the orientation of other objects. Cognition, 105, 1–25.10.1016/j.cognition.2006.08.004Search in Google Scholar

Caramazza, A., McCloskey, M., & Green, B. (1981). Naïve beliefs in “sophisticated” subjects: Misconceptions about trajectories of objects. Cognition, 9, 117–123.10.1016/0010-0277(81)90007-XSearch in Google Scholar

Carey, S. (2009). The origin of concepts. Oxford, England: Oxford University Press.Search in Google Scholar

Cheng, K. (1986). A purely geometric module in the rat’s spatial representation. Cognition, 23(2), 149–178.10.1016/0010-0277(86)90041-7Search in Google Scholar

Cheng, K., & Newcombe, N. S. (2005). Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychonomic Bulletin and Review, 12(1), 1–23.10.3758/BF0319634615945200Search in Google Scholar

Chiandetti, C. (2016). A commentary on “Cats prefer species-appropriate music. Snowdon, C. T., Teie, D., Savage, M. (2015). Applied Animal Behaviour Science, 166, 106-111”. Frontiers in Psychology, 7, 594.Search in Google Scholar

Chiandetti, C., & Turatto, M. (2017). Context-specific habituation of the freezing response in newborn chicks. Behavioral Neuroscience, 131(5), 437–446.10.1037/bne000021228805430Search in Google Scholar

Chiandetti, C., & Vallortigara, G. (2008). Is there an innate geometric module? Effects of experience with angular geometric cues on spatial re-orientation based on the shape of the environment. Animal Cognition, 11(1), 139–146.10.1007/s10071-007-0099-y17629754Search in Google Scholar

Chiandetti, C., & Vallortigara, G. (2010). Experience and geometry: Controlled-rearing studies with chicks. Animal Cognition, 13(3), 463–470.10.1007/s10071-009-0297-x19960217Search in Google Scholar

Chiandetti, C., & Vallortigara, G. (2011a). Chicks like consonant music. Psychological Science, 22, 1270–1273.10.1177/095679761141824421934134Search in Google Scholar

Chiandetti, C., & Vallortigara, G. (2011b). Intuitive physical reasoning about occluded objects by inexperienced chicks. Proceedings of the Royal Society of London B: Biological Sciences, 278(1718), 2621–2627.Search in Google Scholar

Chiandetti, C., Spelke, E. S., & Vallortigara, G. (2015). Inexperienced newborn chicks use geometry to spontaneously reorient to an artificial social partner. Developmental Science, 18(6), 972–978.10.1111/desc.1227725530027Search in Google Scholar

Chiandetti, C., Dissegna, A., & Turatto, M. (2018). Rapid plasticity attenuation soon after birth revealed by habituation in newborn chicks. Developmental Psychobiology,. [in press].10.1002/dev.2162829574691Search in Google Scholar

Collias, N., & Joos, M. (1952). The spectrographic analysis of sound signals of the domestic fowl. Behaviour, 5, 175–188.Search in Google Scholar

Daisley, J. N., Vallortigara, G., & Regolin, L. (2010). Logic in an asymmetrical (social) brain: Transitive inference in the young domestic chick. Social Neuroscience, 5, 309–319.10.1080/17470910903529795Search in Google Scholar

DeCasper, A. J., & Fifer, W. P. (1980). Of human bonding: Newborns prefer their mothers’ voices. Science, 208, 1174–1176.10.1126/science.7375928Search in Google Scholar

Di Giorgio, E., Frasnelli, E., Rosa Salva, O., Scattoni, M. L., Puopolo, M., Tosoni, D., … Vallortigara, G. (2016). Difference in visual social predispositions between newborns at low- and high-risk for autism. Scientific Reports, 6, 26395.10.1038/srep26395Search in Google Scholar

Gori, S., Molteni, M., & Facoetti, A. (2016). Visual illusions: An interesting tool to investigate developmental dyslexia and autism spectrum disorder. Frontiers in Human Neuroscience, 10, 175.10.3389/fnhum.2016.00175Search in Google Scholar

Gottlieb, G. (1979). Development of species identification in ducklings: V. Perceptual differentiation in the embryo. Journal of Comparative and Physiological Psychology, 93, 831–854.10.1037/h0077614Search in Google Scholar

Heaton, M. B. (1972). Prenatal auditory discrimination in the wood duck (Aix sponsa). Animal Behavior, 20, 421–424.10.1016/S0003-3472(72)80002-2Search in Google Scholar

Hetch, H., & Proffitt, D. R. (1995). The price of expertise: Effects of experience on the water level task. Psychological Science, 6, 90–95.10.1111/j.1467-9280.1995.tb00312.xSearch in Google Scholar

Horn, G. (2004). Pathways of the past: The imprint of memory. Nature Reviews Neuroscience, 5, 108–120.10.1038/nrn132414735114Search in Google Scholar

Horn, G., Bradley, P., & McCabe, B. J. (1985). Changes in the structure of synapses associated with learning. Journal of Neuroscience, 5, 3161–3168.10.1523/JNEUROSCI.05-12-03161.1985Search in Google Scholar

Johnson, M. H. (1992). Imprinting and the development of face recognition: From chick to man. Current Directions in Psychological Science, 1, 52–55.10.1111/1467-8721.ep11509740Search in Google Scholar

Johnson, M. H. (2005). Subcortical face processing. Nature Reviews Neuroscience, 6, 766–774.10.1038/nrn1766Search in Google Scholar

Johnson, M. H., & Horn, G. (1988). The development of filial preferences in the dark-reared chick. Animal Behaviour, 36, 675–683.10.1016/S0003-3472(88)80150-7Search in Google Scholar

Johnson, M. H., Bolhuis, J. J., & Horn, G. (1992). Predispositions and learning: Behavioural dissociations in the chick. Animal Behavior, 44(5), 943–948.10.1016/S0003-3472(05)80589-5Search in Google Scholar

Kent, J. P. (1993). The chick’s preference for certain features of the maternal cluck vocalization in the domestic fowl (Gallus gallus). Behaviour, 125, 177–187.10.1163/156853993X00227Search in Google Scholar

Köhler, W. (1921). The mentality of Apes. London, England: Kegan Paul, Trench, Trubner, 1927.Search in Google Scholar

Lorenz, K. (1935). Der Kumpan in der Umwelt des Vogels. Journal fur Ornithologie, 83, 137–213.; 289-413.10.1007/BF01905355Search in Google Scholar

Lorenz, K. (1988). Hier bin ich - wo bist du? Ethologie der graugans gebundene ausgabe. Verlag: München, Piper.Search in Google Scholar

Mascalzoni, E., Regolin, L., & Vallortigara, G. (2010). Innate sensitivity for self-propelled causal agency in newly hatched chicks. Proceedings of the National Academy of Sciences of the United States of America, 107, 4483–4485.10.1073/pnas.0908792107284011920160095Search in Google Scholar

Mayer, U., Pecchia, T., Bingman, V. P., Flore, M., & Vallortigara, G. (2016). Hippocampus and medial striatum dissociation during goal navigation by geometry or features in the domestic chick: An immediate early gene study. Hippocampus, 26(1), 27–40.10.1002/hipo.2248626135386Search in Google Scholar

Mayer, U., Bhushan, R., Vallortigara, G., & Lee, S. A. (2017). Representation of environmental shape in the hippocampus of domestic chicks (Gallus gallus). Brain Structure and Function, 2017, 1–13.Search in Google Scholar

McCabe, B. J. (2013). Imprinting. Wiley Interdisciplinary Reviews: Cognitive Science, 4(4), 375–390.10.1002/wcs.123126304225Search in Google Scholar

Partanen, E., Kujala, T., Tervaniemi, M., & Huotilainen, M. (2013). Prenatal music exposure induces long-term neural effects. PLoS ONE, 8(10), e78946.10.1371/journal.pone.0078946381361924205353Search in Google Scholar

Pattison, K. F., Miller, H. C., Rayburn-Reeves, R., & Zentall, T. (2011). The case of the disappearing bone: Dogs’ understanding of the physical properties of objects. Behavioural Processes, 85(3), 278–282.10.1016/j.beproc.2010.06.01620600694Search in Google Scholar

Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., … Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116, 33–41.10.1016/j.cognition.2010.03.01220381023Search in Google Scholar

Regolin, L., & Vallortigara, G. (1995). Perception of partly occluded objects by young chicks. Perception and Psychophysics, 57, 971–976.10.3758/BF03205456Search in Google Scholar

Rosa-Salva, O. R., Regolin, L., & Vallortigara, G. (2010). Faces are special for chicks: Evidence for inborn domain-specific mechanisms underlying spontaneous preferences for face-like stimuli. Developmental Science, 13(4), 565–577.10.1111/j.1467-7687.2009.00914.x20590721Search in Google Scholar

Rosa-Salva, O. R., Farroni, T., Regolin, L., Vallortigara, G., & Johnson, M. H. (2011). The evolution of social orienting: Evidence from chicks (Gallus gallus) and human newborns. PLoS ONE, 6(4), e18802.10.1371/journal.pone.0018802308038521533093Search in Google Scholar

Rosa-Salva, O. R., Regolin, L., & Vallortigara, G. (2012). Inversion of contrast polarity abolishes spontaneous preferences for face-like stimuli in newborn chicks. Behavioural Brain Research, 228(1), 133–143.10.1016/j.bbr.2011.11.02522155610Search in Google Scholar

Rosa-Salva, O. R., Grassi, M., Lorenzi, E., Regolin, L., & Vallortigara, G. (2016). Spontaneous preference for visual cues of animacy in naïve domestic chicks: The case of speed changes. Cognition, 157, 49–60.10.1016/j.cognition.2016.08.01427592411Search in Google Scholar

Santolin, C., Rosa-Salva, O., Vallortigara, G., & Regolin, L. (2016). Unsupervised statistical learning in newly-hatched chicks. Current Biology, 26, 1218–1220.10.1016/j.cub.2016.10.01127923125Search in Google Scholar

Schwartz, D. A., Howe, C. Q., & Purves, D. (2003). The statistical structure of human speech sounds predicts musical universals. Journal of Neuroscience, 23(18), 7160–7168.10.1523/JNEUROSCI.23-18-07160.2003Search in Google Scholar

Spalding, D. A. (1873). Instinct, with original observations on young animals. Macmilan’s Magazine, 27, 282–293.Search in Google Scholar

Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10, 89–96.10.1111/j.1467-7687.2007.00569.x17181705Search in Google Scholar

Spelke, E., Lee, S. A., & Izard, V. (2010). Beyond core knowledge: Natural geometry. Cognitive Science, 34(5), 863–884.10.1111/j.1551-6709.2010.01110.x289717820625445Search in Google Scholar

Stahl, A. E., & Feigenson, L. (2015). Observing the unexpected enhances infants’ learning and exploration. Science, 348(6230), 91–94.Search in Google Scholar

Stensola, T., & Moser, E. I. (2016). Grid cells and spatial maps in entorhinal cortex and hippocampus. In G. Buzsáki & Y. Christen (Eds.), Micro-, meso- and macro-dynamics of the brain (pp. 59–80). Berlin, Germany: Springer.Search in Google Scholar

Vallortigara, G. (2012). Core knowledge of object, number, and geometry: A comparative and neural approach. Cognitive Neuropsychology, 29(1–2), 37–41.10.1080/02643294.2012.654772Search in Google Scholar

Vallortigara, G. (2017). An animal’s sense of number. In J. W. Adams, P. Barmby, & A. Mesoudi (Eds.), The nature and development of mathematics. Cross disciplinary perspective on cognition, learning and culture (pp. 43–65). New York, NY: Routledge.Search in Google Scholar

Vallortigara, G., & Andrew, R. J. (1994). Differential involvement of right and left hemisphere in individual recognition in the domestic chick. Behavioural Processes, 33, 41–58.10.1016/0376-6357(94)90059-0Search in Google Scholar

Vallortigara, G., & Chiandetti, C. (2017). Objects and space in an avian brain. In C. Carel ten Cate & S. D. Healy (Eds.), Avian cognition (pp. 141–162). Cambridge, England: Cambridge University Press.Search in Google Scholar

Vallortigara, G., Regolin, L., & Marconato, F. (2005). Visually inexperienced chicks exhibit a spontaneous preference for biological motion patterns. PLOS Biology, 3(7), 1312–1316. (e208).10.1371/journal.pbio.0030208115029015934787Search in Google Scholar

Wagner, A. (1978). Expectancies and the priming of STM. In S. H. Hulse, H. Fowler, & R. Honig (Eds.), Cognitive processes in animal behaviour (pp. 177–209). Hillsdale, NJ: Erlbaum.Search in Google Scholar

Yamaguchi, S., Aoki, N., Kitajima, T., Iikubo, E., Katagiri, S., Matsushima, T., & Homma, K. J. (2012). Thyroid hormone determines the start of the sensitive period of imprinting and primes later learning. Nature Communications, 3, 1081.10.1038/ncomms2088365800023011135Search in Google Scholar

Zanforlin, M. (1981). Visual perception of complex forms (anomalous surfaces) in chicks. Italian Journal of Psychology, 8, 1–16.Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo