Accesso libero

Sessile oak (Quercus petraea [Matt.] Liebl.) and its adaptation strategies in the context of global climate change: a review

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Aas, G., 1993: Taxonomical impact of morphological variation in Quercus robur and Q. petraea: a contribution to the hybrid controversy. Annals of Forest Science, 50:107–113. Search in Google Scholar

Aldea, J., Bravo, F., Bravo-Oviedo, A., Ruiz-Peinado, R., Rodriguez, F., del Río, M., 2017: Thinning enhances the species-specific radial increment response to drought in Mediterranean pine-oak stands. Agricultural and Forest Meteorology, 237:371–383. Search in Google Scholar

Altman, J., Hédl, R., Szabó, P., Mazůrek, P., Riedl, V., Müllerová, J. et al., 2013: Tree-rings mirror management legacy: Dramatic response of standard oaks to past coppicing in Central Europe. PLoS ONE, 8:e55770. Search in Google Scholar

Andersson, M., Milberg, P., Bergman, K. O., 2011: Low pre-death growth rates of oak (Quercus robur L.) – Is oak death a long-term process induced by dry years? Annals of Forest Science, 68:159–168. Search in Google Scholar

Annighöfer, P., Beckschäfer, P., Vor, T., Ammer, C., 2015: Regeneration patterns of European oak species (Quercus petraea [Matt.] Liebl., Quercus robur L.) in dependence of environment and neighborhood. PLoS ONE, 10:e0134935. Search in Google Scholar

Arab, L., Seegmueller, S., Kreuzwieser, J., Eiblmeier, M., Dannenmann, M., Rennenberg, H., 2022: Significance of current weather conditions for foliar traits of old-growth sessile oak (Quercus petraea Liebl) trees. Trees – Structure and Function, 36:777–791. Search in Google Scholar

Arend, M., Kuster, T., Günthardt-Goerg, M. S., Dobbertin, M., 2011: Provenance-specific growth responses to drought and air warming in three European oak species (Quercus robur, Q. petraea and Q. pubescens). Tree Physiology, 31:287–297. Search in Google Scholar

Aubin, I., Munson, A. D., Cardou, F., Burton, P. J., Isabel, N., Pedlar, J. H. et al., 2016: Traits to stay, traits to move: a review of functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees to climate change. Environmental Reviews, 24:164–186. Search in Google Scholar

Barba, J., Lloret, F., Yuste, J. C., 2016: Effects of drought-induced forest die-off on litter decomposition. Plant and Soil, 402:91–101. Search in Google Scholar

Barbaroux, C., Bréda, N., 2002: Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiology, 22:1201–1210. Search in Google Scholar

Bello, J., Hasselquist, N. J., Vallet, P., Kahmen, A., Perot, T., Korboulewsky, N., 2019a: Complementary water uptake depth of Quercus petraea and Pinus sylvestris in mixed stands during an extreme drought. Plant and Soil, 437:93–115. Search in Google Scholar

Bello, J., Vallet, P., Perot, T., Balandier, P., Seigner, V., Perret, S. et al., 2019b: How do mixing tree species and stand density affect seasonal radial growth during drought events? Forest Ecology and Management, 432:436–445. Search in Google Scholar

Bequet, R., Campioli, M., Kint, V., Muys, B., Bogaert, J., Ceulemans, R., 2012: Spatial variability of leaf area index in homogeneous forests relates to local variation in tree characteristics. Forest Science, 58:633–640. Search in Google Scholar

Berki, I., Rasztovits, E., Móricz, N., Kolozs, L., 2016: The role of tree mortality in vitality assessment of sessile oak forests. South-East European Forestry, 7:91–97. Search in Google Scholar

Bertini, G., Amoriello, T., Fabbio, G., Piovosi, M., 2011: Forest growth and climate change: evidences from the ICP-Forests intensive monitoring in Italy. iForest – Biogeosciences and Forestry, 4:262–267. Search in Google Scholar

Bertrand, R., Lenoir, J., Piedallu, C., Riofrío-Dillon, G., de Ruffrray, P., Vidal, C. et al., 2011: Changes in plant community composition lag behind climate warming in lowland forests. Nature, 479:517–520. Search in Google Scholar

Bhatta, K. P., Vetaas, O. R., 2016: Does tree canopy closure moderate the effect of climate warming on plant species composition of temperate Himalayan oak forest? Journal of Vegetation Science, 27:948–957. Search in Google Scholar

Bieng, M. A. N., Perot, T., de Coligny, F., Goreaud, F., 2013: Spatial pattern of trees influences species productivity in a mature oak-pine mixed forest. European Journal of Forest Research, 132:841–850. Search in Google Scholar

Bigler, C., Bräker, O. U., Bugmann, H., Dobbertin, M., Rigling, A., 2006: Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems, 9:330–343. Search in Google Scholar

Blanc-Jolivet, C., Liesebach, M., 2015: Tracing the origin and species identity of Quercus robur and Quercus petraea in Europe: a review. Silvae Genetica, 6:182–193. Search in Google Scholar

Blońska, E., Lasota, J., Januszek, K., 2013: Relation between properties of humus horizon and oak participation in a Scots pine stands. Soil Science Annual, 64:82–87. Search in Google Scholar

Bobinac, M., Andrašev, S., Radaković, N., Šušić, N., Živković, A. B., 2019: The structure of stands from different subassociations of a monodominant sessile oak forest (Quercetum petraeae Cer. et Jov. 1953.) in the area of northeastern Serbia before and after regeneration. Glasnik Šumarskog fakulteta, 120:21–36. Search in Google Scholar

Boisvenue, C., Running, S. W., 2006: Impacts of climate change on natural forest productivity – evidence since the middle of the 20th century. Global Change Biology, 12:862–882. Search in Google Scholar

Bölöni, J., Ódor, P., Ádám, R., Keeton, W. S., Aszalós, R., 2017: Quantity and dynamics of dead wood in managed and unmanaged drymesic oak forests in the Hungarian Carpathians. Forest Ecology and Management, 399:120–131. Search in Google Scholar

Borovics, A., Mátyás, C., 2013: Decline of genetic diversity of sessile oak at the retracting (xeric) limits. Annals of Forest Science, 70:835–844. Search in Google Scholar

Brabec, P., Brichta, J., Vacek, Z., Vacek, S., Šimůnek, V., Hájek, V., 2023: Potential of mixed Picea abies [L.] Karst. and Pinus sylvestris L. forests in lowland areas of Central Bohemia. Journal of Forest Science, 69:470–484. Search in Google Scholar

Bréda, N. J. J., Granier, A., Barataud, F., Moyne, C., 1995: Soil-water dynamics in an oak stand. Plant and Soil, 172:17–27. Search in Google Scholar

Bréda, N. J. J., Granier, A., 1996: Intra- and interannual variations of transpiration, leaf area index and radial growth of a sessile oak stand (Quercus petraea). Annals of Forest Science, 53:521–536. Search in Google Scholar

Březina, I., Dobrovolný, L., 2011: Natural regeneration of sessile oak under different light conditions. Journal of Forest Science, 57:359–368. Search in Google Scholar

Buckley, P., 2020: Coppice restoration and conservation: a European perspective. Journal of Forest Research, 25:125–133. Search in Google Scholar

Burger, W. C., 1975: The species concept in Quercus. Taxon, 24:45–50. Search in Google Scholar

Buriánek, V., Benedíková, M., Frýdl, J., Novotný, P., 2013: Methodological manual for native oak species determination. Lesnický průvodce, 8/2013. Strnady, Výzkumný ústav lesního hospodářství a myslivosti, v. v. i., 40 p. (In Czech). Search in Google Scholar

Caudullo, G., Welk, E., San-Miguel-Ayanz, J., 2017: Chorological maps for the main European woody species. Data in Brief, 12:662–666. Search in Google Scholar

Cristofolini, G., 2023: Caspar Bauhin’s contribution to a historical herbárium stored in Bologna. Candollea, 78:33–51. Search in Google Scholar

Cukor, J., Linhart, L., Vacek, Z., Baláš, M., Linda, R., 2017a: The effects of Alginite fertilization on selected tree species seedlings performance on afforested agricultural lands. Central European Forestry Journal, 63:48–56. Search in Google Scholar

Cukor, J., Vacek, Z., Linda, R., Remeš, J., Bílek, L., Sharma, R. P. et al., 2017b: Effect of mineral eco-fertilizer on growth and mortality of young afforestations. Austrian Journal of Forest Science, 134:367–385. Search in Google Scholar

Cukor, J., Vacek, Z., Vacek, S., Linda, R., Podrázský, V., 2022: Biomass productivity, forest stability, carbon balance, and soil transformation of agricultural land afforestation: A case study of suitability of native tree species in the submontane zone in Czechia. Catena, 210:105893. Search in Google Scholar

Curtu, A. L., Craciunesc, I., Enescu, C. M., Vidalis, A., Şofletea, N., 2015: Fine-scale spatial genetic structure in a multi-oak-species (Quercus spp.) forest. iForest – Biogeosciences and Forestry, 8:324–332. Search in Google Scholar

Cutini, A., Matteucci, G., Mugnoza, G. S., 1998: Estimation of leaf area index with the Li-Cor LAI 2000 in deciduous forests. Forest Ecology and Management, 105:55–65. Search in Google Scholar

Cuypers, V., Reydon, T. A. C., 2023: An oak is an oak, or not? Understanding and dealing with confusion and disagreement in biological classification. Biology & Philosophy, 38:39. Search in Google Scholar

Čermák, J., 1998: Leaf distribution in large trees and stands of the floodplain forest in southern Moravia. Tree Physiology, 18:727–737. Search in Google Scholar

Čermák, P., Mikita, T., Kadavý, J., Trnka, M., 2021: Evaluating recent and future climatic suitability for the cultivation of Norway spruce in the Czech Republic in comparison with observed tree cover loss between 2001 and 2020. Forests, 12:1687. Search in Google Scholar

Černý, J., Pokorný, R., Haninec, P., Bednář, P., 2019: Leaf area index estimation using three distinct methods in pure deciduous stands. Journal of Visualized Experiments, 150:e59757. Search in Google Scholar

Černý, J., Haninec, P., Pokorný, R., 2020: Leaf area index estimated by direct, semi-direct, and indirect methods in European beech and sycamore maple stands. Journal of Forestry Research, 31:827–836. Search in Google Scholar

Černý, J., Pokorný, R., 2021: Field measurement of effective leaf area index using optical device in vegetation canopy. Journal of Visualized Experiments, 173:e62802. Search in Google Scholar

Černý, J., Dušek, D., 2022: Effect of different stand structures on Scots pine (Pinus sylvestris) and sessile oak (Quercus petraea) growth in the lower altitudinal zones. In: Nagel, R.-V., Schmidt, M. (eds.): Tagungs-Tagungs-band zur Jahrestagung der Sektion Ertragskunde im DVFFA vom 12.–14.09.2022 in Rendsburg/ Schleswig-Holstein, Germany, p. 186–190. Search in Google Scholar

del Río, M., Pretzsch, H., Ruiz-Peinado, R., Jactel, H., Coll, L., Löf, M. et al., 2022: Emerging stability of forest productivity by mixing two species buffers temperature destabilizing effect. Journal of Applied Ecology, 59:2730–2741. Search in Google Scholar

Derory, J., Léger, P., Garcia, V., Schaeffer, J., Hauser, M.-T., Salin, F. et al., 2006: Transcriptome analysis of bud burst in sessile oak (Quercus petraea). New Phytologist, 170:723–738. Search in Google Scholar

Desprez-Loustau, M.-L., Marçais, B., Nageleisen, L.-M., Piou, D., Vannini, A., 2006: Interactive effects of drought and pathogens in forest trees. Annals of Forest Science, 63:597–612. Search in Google Scholar

Dickmann, D. I., Nguyen, P. V., Pregitzer, K. S., 1996: Effects of irrigation and coppicing on above-ground growth, physiology and fine-root dynamics of two field-grown hybrid poplar clones. Forest Ecology and Management, 8:63–174. Search in Google Scholar

Dickson, R. E., Tomlinson, P. T., 1996: Oak growth, development and carbon metabolism in response to water stress. Annals of Forest Science, 53:181–196. Search in Google Scholar

Dobrovolný, L., Macháček, J., 2012: Production potential and quality of sessile oak oak (Quercus petraea Liebl.) in different types of mixtures. Acta Universitatis Agriculturae et Silviculturea Mendelianea Brunensis, 60:57–66. Search in Google Scholar

Ducousso, A., Bordacs, S. 2004: EUFORGEN: Technical guidelines for genetic conservation and use for pedunculate and sessile oaks (Quercus robur and Quercus petraea). Rome, International Plant Genetic Resources Institute, 6 p. Search in Google Scholar

Eaton, E., Caudullo, G., Oliveira, S., de Rigo, D., 2016: Quercus robur and Quercus petraea in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (eds.): European Atlas of Forest Tree Species. Luxembourg, Publication Office EU, p. 160–163. Search in Google Scholar

Eliáš, P., 1997: A male-based sex ratio in mistletoes. Biologia, 52:49–51. Search in Google Scholar

Ellenberg, H. H., 2009: Vegetation ecology of Central Europe. Cambridge, Cambridge University Press, 734 p. Search in Google Scholar

Fuchs, Z., Vacek, Z., Vacek, S., Gallo, J., 2021: Effect of game browsing on natural regeneration of European beech (Fagus sylvatica L.) forests in the Krušné hory Mts. (Czech Republic and Germany). Central European Forestry Journal, 67:166–180. Search in Google Scholar

Fuchs, Z., Vacek, Z., Vacek, S., Cukor, J., Šimůnek, V., Štefančík, I. et al., 2024: European beech (Fagus sylvatica L.): A promising candidate for future forest ecosystems in Central Europe amid climate change. Central European Forestry Journal, 70:62–76. Search in Google Scholar

Gafenco, I. M., Pleşca, B. I., Apostol E. N., Şofletea, N., 2022: Spring and autumn phenology in sessile oak (Quercus petraea) near the eastern limit of its distribution range. Forests, 13:1125. Search in Google Scholar

Galiano, L., Martinez-Vilalta, J., Lloret, F., 2010: Drought-induced multifactor decline of Scots pine in the Pyrenees and potential vegetation change by the expansion of co-occurring oak species. Ecosystems, 13:978–991. Search in Google Scholar

Gardiner, A. S., 1975: The sessile oak: Anomalies of the binomial. Transactions of the Botanical Society of Edinburgh, 42:261–263. Search in Google Scholar

Gerber, S., Chadoeuf, J., Gugerli, F., Lascoux, M., Buiteveld, J., Cottrell, J. et al., 2014: High rates of gene flow by pollen and seed in oak populations across Europe. PLoS ONE, 9:e85130. Search in Google Scholar

Gessler, A., Schaub, M., McDowell, N. G., 2016: The role of nutrients in drought-induced tree mortality and recovery. New Phytologist, 214:513–520. Search in Google Scholar

Girijaveni, V., Sammi, R. K., Sharma, K. L., Moulika, G., 2018: Zeolites are emerging soil amendments for improving soil physical and chemical properties in agriculture: A review. International Journal of Agriculture, Environment and Biotechnology, 11:841–849. Search in Google Scholar

Glathorn, J., Pichler, V., Hauck, M., Leuschner, C., 2017: Effects of forest management on stand leaf area: comparing beech production and primeval forests in Slovakia. Forest Ecology and Management, 389:76–85. Search in Google Scholar

Gonzalez, P., Neilson, R. P., Lenihan, J. M., Drapek, R. J., 2010: Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Global Ecology and Biogeography, 19:755–768. Search in Google Scholar

Hacke, U., Sauter, J. J., 1995: Vulnerability of xylem to embolism in relation to leaf water potential and stomatal conductance in Fagus sylvatica f. purpurea and Populus balsamifera. Journal of Experimental Botany, 46:1177–1183. Search in Google Scholar

Hájek, V., Vacek, Z., Vacek, S., Bílek, L., Prausová, R., Linda, R. et al., 2020: Changes in diversity of protected scree and herb-rich beech forest ecosystems over 55 years. Central European Forestry Journal, 66:202–217. Search in Google Scholar

Hanewinkel, M., Cullmann, D. A., Schelhaas, M.-J., Nabuurs, G.-J., Zimmermann, N. E., 2013: Climate change may cause severe lost in the economic value of European forest land. Nature Climate Change, 3:203–207. Search in Google Scholar

Hédl, R., Kopecký, M., Komárek, J., 2010: Half a century of succession in a temperate oakwood: from species-rich community to mesic forest. Diversity and Distributions, 16:267–276. Search in Google Scholar

Hlásny, T., Turčáni, M., 2013: Persisting bark beetle outbreak indicates the unsustainability of secondary Norway spruce forests: case study from Central Europe. Annals of Forest Science, 70:481–491. Search in Google Scholar

Holišová, P., Pietras, J., Dařenová, E., Novosadová, K., Pokorný, R., 2016: Comparison of assimilation parameters of coppiced and non-coppiced sessile oaks. iForest – Biogeosciences and Forestry, 9:553–559. Search in Google Scholar

Chroust, L., 1997: Ecology of forest tending. Norway spruce – Scots pine – Pedunculate oak – site conditions – tree growth – stand production. Opočno, Forestry and Game Management Research Institute, 277 p. (In Czech). Search in Google Scholar

Iverson, L. R., Mckenzie, D., 2013: Tree-species range shifts in a changing climate: detecting, modeling, assisting. Landscape Ecology, 28:879–889. Search in Google Scholar

Jeník, J., 2014: Roots and roots system of the trees. Liberec, Botanická zahrada, 331 p. (Bilingual in English and Czech). Search in Google Scholar

Jones, E. W., 1959: Biological flora of the British Isles, Quercus petraea [Matt.] Liebl. Journal of Ecology, 47:169–222. Search in Google Scholar

Kacálek, D., Mauer, O., Podrázský, V., Slodičák, M., Houšková, K., Špulák, O. et al., 2017: Soil improving and stabilising functions of forest trees. Kostelec nad Černými lesy, Lesnická práce, 300 p. (In Czech). Search in Google Scholar

Kadavý, J., Kneifl, M., Servus, M., Knott, R., Hurt, V., Flora, M., 2011: Coppice and coppice with standards – a full-fledged alternative for small and mediumsized forest owners. Kostelec nad Černými lesy, Lesnická práce, 296 p. (In Czech). Search in Google Scholar

Kasprzyk, W., Baranowska, M., Korzeniewicz, R., Behnke-Borowczyk, J., Kowalkowski, W., 2022: Effect of irrigation dose on powdery mildew incidence and root biomass of sessile oaks (Quercus petraea [Matt.] Liebl.). Plants, 11:1248. Search in Google Scholar

Klíma, S., 2010: Production evaluation of the variously tended mixture of oak and hornbeam with valuable broadleaves. In: Knott, R., Peňáz, J., Vaněk, P. (eds.): Silviculture at lower forest vegetation zones. Brno, Publishing Centre of Mendel University, p. 59–64. Search in Google Scholar

Kölling, C., 2007: Klimahüllen für 27 Waldbaumarten. AFZ-DerWald 23:1242–1245. (In German). Search in Google Scholar

Kölling, C., Zimmermann, L., 2007: Die Anfalligkeit der Walder Deutschlands gegenuber Klimawandel. Gefahrstoffe-Reinhaltung der Luft, 67:259–268. (In German). Search in Google Scholar

Korpeľ, Š., Peňáz, J., Saniga, M., Tesař, V., 1991: Pestovanie lesa. Bratislava, Príroda, 472 p. (In Slovak). Search in Google Scholar

Kowalski, T., Halmschlager, E., 1996: Chalara angustata sp. nov. from roots of Quercus petraea and Quercus robur. Mycological Research, 100:1112–1116. Search in Google Scholar

Kozlowski, T. T., 1982: Water supply and tree growth. Part I. Water deficits. For. Abstr. (United Kingdom), 43:57–95. Search in Google Scholar

Kubíček, J., Špinlerová, Z., Michalko, R., Vrška, T., Matula, R., 2018: Temporal dynamics and size effects of mistletoe (Loranthus europaeus Jacq.) infection in an oak forest. Austrian Journal of Forest Science, 135:119–135. Search in Google Scholar

Kubov, M., Fleischer Jr., P., Rozkošný, J., Kurjak, D., Konôpková, A., Galko, J. et al., 2020: Drought or severe drought? Hemiparasitic yellow mistletoe (Loranthus europaeus) amplifies drought stress in sessile oak trees (Quercus petraea) by altering water status and physiological responses. Water, 12:2985. Search in Google Scholar

Kula, E., 2022: Food trees and fecundity of forest cock-chafer Melolontha hippocastani Fabr. Sylwan, 166:431–443. Search in Google Scholar

Landsberg, J. J., Sands, P. J., 2011: Physiological ecology of forest production. London, Academic Press, 331 p. Search in Google Scholar

Lehmann, B. W., 2008: Effekte einzelbaumweise ein-Effekte einzelbaumweise eingemischter einheimischer Eichen in Wäldern der Gemeinen Kiefer (Pinus sylvestris L.) auf Standorten geringer Trophie und Wasserversorgung im Süden Brandenburgs. PhD thesis, Dresden, TU Dresden, 186 p. (In German). Search in Google Scholar

Leuzinger, S., Körner, C., 2007: Water savings in mature deciduous forest trees under elevated CO2. Global Change Biology, 13:2498–2508. Search in Google Scholar

Linder, M., Garcia-Gonzalo, J., Kolstrom, M., Green, T., Reguera, R., Maroschek, M. et al., 2008: Impacts of climate change on European forests and options for adaptation. AGRI-2007-G4-06, 174 p. Available at: https://hal.inrae.fr/hal-02821804. Search in Google Scholar

Lu, H. C., Mohren, G. M. J., den Ouden, J., Goudiaby, V., Sterck, F. J., 2016: Overyielding of temperate mixed forests occurs in evergreen-deciduous but not in deciduous-deciduous species mixtures over time in the Netherlands. Forest Ecology and Management, 376:321–332. Search in Google Scholar

Mabberley, D. J., 2017: Mabberley’s plant-book: a portable dictionary of plants, their classification and uses. Cambridge, Cambridge University Press, 1102 p. Search in Google Scholar

Machar, I., Voženílek, V., Kirchner, K., Vlčková, V., Buček, A., 2017: Biogeographic model of climate conditions for vegetation zones in Czechia. Geografie, 122:64–82. (In Czech). Search in Google Scholar

Manso, R., Morneau, F., Ningre, F., Fortin, M., 2015: Effect of climate and intra- and inter- specific competition on diameter increment in beech and oak stands. Forestry, 88:540–551. Search in Google Scholar

Marçais, B., Desprez-Loustau, M.-L., 2014: European oak powdery mildew: impact on trees, effects of environmental factors, and potential effects of climate change. Annals of Forest Science, 71:633–642. Search in Google Scholar

Marković, Č., Stojanović, A., 2003: Significance of parasitoids in the reduction of oak bark beetle Scolytus intricatus Ratzeburg (Col., Scolytidae) in Serbia. Journal of Applied Entomology, 127:23–28. Search in Google Scholar

Martinek, P., Kula, E., Hedbávný, J., 2018: Reactions of Melolontha hippocastani adults to high manganese content in food. Ecotoxicology and Environmental Safety, 148:37–43. Search in Google Scholar

Matula, R., Svátek, M., Kůrová, J., Úradníček, L., Kadavý, J., Kneifl, M., 2012: The sprouting ability of the main tree species in Central European coppices: implications for coppice restoration. European Journal of Forest Research, 131:1501–1511. Search in Google Scholar

Matula, R., Svátek, M., Pálková, M., Volařík, D., Vrška, T., 2015: Mistletoe infection in an oak forest is influenced by competition and host size. PLoS ONE, 10:e0127055. Search in Google Scholar

Matveev, S., Milenin, A., Timashchuk, D., 2018: The effects of limiting climate factors on the increment of native tree species (Pinus sylvestris L., Quercus robur L.) of the Voronezh region. Journal of Forest Science, 64:427–434. Search in Google Scholar

Merlin, M., Perot, T., Perret, S., Korboulewsky, N., Vallet, P., 2015: Effects of stand composition and tree size on resistance and resilience to drought in sessile oak and Scots pine. Forest Ecology and Management, 339:22–33. Search in Google Scholar

Mezei, P., Fleischer, P., Rozkošný, J., Kurjak, D., Dzurenko, M., Rell, S. et al., 2022: Weather conditions and host characteristics drive infestations of sessile oak (Quercus petraea) trap trees by oak bark beetles (Scolytus intricatus). Forest Ecology and Management, 503:119775. Search in Google Scholar

Michelot, A., Bréda, N. J. J., Damesin, C., Dufrêne, E., 2012: Differing growth responses to climatic variations and soil water deficits of Fagus sylvatica, Quercus petraea and Pinus sylvestris in a temperate forest. Forest Ecology and Management, 265:161–171. Search in Google Scholar

Monteith, J. L., 1972: Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 9:747–766. Search in Google Scholar

Muir, G., Fleming, C. C., Schltterer, C., 2000: Species status of hybridizing oaks. Nature, 405:1016. Search in Google Scholar

Müller, M., Gailing, O., 2020: Abiotic genetic adaptation in the Fagaceae. Plant Biology, 21:783–795. Search in Google Scholar

Neuwirth, B., Esper, J., Schweingruber, F. H., Winiger, M., 2004: Site ecological differences to the climatic forcing of spruce pointer years from the Lötschental, Switzerland. Dendrochronologia, 21:69–78. Search in Google Scholar

Noack, M., 2011: Growth and nutrition of Quercus petraea underplanted in artificial pine stands under conversion in the northeast German Lowlands. Forest Systems, 20:423–436. Search in Google Scholar

Olascoaga, B., MacArtur, A., Atherton, J., Porcar-Castell, A., 2016: A comparison of methods to estimate photo-synthetic light absorption in leaves with contrasting morphology. Tree Physiology, 36:368–379. Search in Google Scholar

Ouédraogo, D. Y., Mortier, F., Gourlet-Fleury, S., Freycon, V., Picard, N., 2013: Slow-growing species cope best with drought: evidence from long-term measurements in a tropical semi-deciduous moist forest of Central Africa. Journal of Ecology, 101:1459–1470. Search in Google Scholar

Palacio, S., Hoch, G., Sala, A., Körner, C., Millard, P., 2014: Does carbon storage limit tree growth? New Phytologist, 201:1096–1100. Search in Google Scholar

Parker, G. G., 2020: Tamm review: Leaf area index (LAI) is both a determinant and a consequence of important processes in vegetation canopies. Forest Ecology and Management, 477:118496. Search in Google Scholar

Pažoutová, S., Šrůtka, P., Holuša, J., Chudíčková, M., Kolařík, M., 2010: Diversity of xylariaceous symbionts in Xyphydria woodwasps: role of vector and a host tree. Fungal Ecology, 3:392–401. Search in Google Scholar

Perot, T., Balandier, P., Couteau, C., Delpierre, N., Jean, F., Perret, S. et al., 2021: Budburst date of Quercus petraea is delayed in mixed stands with Pinus sylvestris. Agricultural and Forest Meteorology, 300:108326. Search in Google Scholar

Peřina, V., 1973: Effect of spruce and oak admixture on growth and soil properties of pine stands. Lesnictví, 19:547–566. (In Czech). Search in Google Scholar

Petit, R. J., Bodénès, C., Ducousso, A., Roussel, G., Kremer, A., 2004: Hybridization as a mechanism of invasion in oaks. New Phytologist, 161:151–164. Search in Google Scholar

Petritan, A. M., Biris, I. A., Merce, O., Turcu, D. O., Petritan, I. C., 2012: Structure and diversity of a natural temperate sessile oak (Quercus petraea L.) – European Beech (Fagus sylvatica L.) forest. Forest Ecology and Management, 280:140–149. Search in Google Scholar

Petritan, A. M., Petritan, I. C., Hevia, A., Walentowski, H., Bouriaud, O., Sánchez-Salguero, R., 2021: Climate warming predispose sessile oak forests to drought-induced tree mortality regardless of management legacies. Forest Ecology and Management, 491:119097. Search in Google Scholar

Pietras, J., Stojanović, M., Knott, R., Pokorný, R., 2015: Oak sprouts grow better than seedlings under drought stress. iForest – Biogeosciences and Forestry, 9:529–535. Search in Google Scholar

Poleno, Z., Vacek, S., Podrázský, V., Remeš, J., Štefančík, I., Mikeska, M. et al., 2009: Silviculture III. Kostelec nad Černými lesy, Lesnická práce, 951 p. (In Czech). Poyatos, R., Llorens, P., Piñol, J. Rubio, C., 2008: Search in Google Scholar

Response of Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd.) to soil and atmospheric water deficits under Mediterranean mountain climate. Annals of Forest Science, 65:306. Search in Google Scholar

Požgaj, A., Chovanec, D., Kurjatko, S., Babiak, M., 1997: Structure and properties of wood. Bratislava, Príroda, 448 p. (In Slovak). Search in Google Scholar

Praciak, A., 2013: The CABI encyclopedia of forest trees. Wallingford, CABI, 523 p. Search in Google Scholar

Prentice, I. C., Helmisaari, H., 1991: Silvics of north European trees: Compilation, comparisons and implications for forest succession modelling. Forest Ecology and Management, 42:79–93. Search in Google Scholar

Pretzsch, H., Dieler, J., Seifert, T., Rötzer, T., 2012: Climate effects on productivity and resource-use efficiency of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) in stands with different spatial mixing patterns. Trees – Structure and Function, 26:1343–1360. Search in Google Scholar

Pretzsch, H., Bielak, K., Block, J., Bruchwald, A., Dieler, J., Ehrhart, H.-P. et al., 2013: Productivity of mixed versus pure stands of oak (Quercus petraea [Matt.] Liebl. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient. European Journal of Forest Research, 132:263–280. Search in Google Scholar

Pretzsch, H., del Río, M., Ammer, C., Avdagić, A., Barbeito, I., Bielak, K. et al., 2015: Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. European Journal of Forest Research, 134:927–947. Search in Google Scholar

Pretzsch, H., del Río, M., Biber, P., Arcangeli, C., Bielak, K., Brang, P. et al., 2018: Maintenance of long-term experiments for unique insights into forest growth dynamics and trends: review and perspectives. European Journal of Forest Research, 138:165–185. Search in Google Scholar

Pretzsch, H., Steckel, M., Heym, M., Biber, P., Ammer, C., Ehbrecht, M. et al., 2020: Stand growth and structure of monospecific and mixed-species stands of Scots pine (Pinus sylvestris L.) and oak (Q. robur L., Quercus petraea [Matt.] Liebl.) analysed along a productivity gradient through Europe. European Journal of Forest Research, 139:349–367. Search in Google Scholar

Prietzel, J., 2004: Humusveränderungen nach Einbringung von Buche und Eiche in Kiefernreinbestände. Journal of Plant Nutrition and Soil Science, 167:428–438. (In German). Search in Google Scholar

Rozas, V., Sampedro, L., 2013: Soil chemical properties and dieback of Quercus robur in Atlantic wet forests after a weather extreme. Plant and Soil, 373:673–685. Search in Google Scholar

Savill, P. S., 2019: The silviculture of trees used in British forestry. Boston, CABI, 344 p. Search in Google Scholar

Sedmáková, D., Sedmák, R., Saniga, M., Sarvašová, I., Parobeková, Z., Potterf, M. et al., 2021: Response of oaks to extreme climate events in the transition zone of oak and beech forests. Reports of Forestry Research, 66:104–114. Search in Google Scholar

Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G. et al., 2017: Forest disturbances under climate change. Nature Climate Change, 7:395–402. Search in Google Scholar

Sharma, R. P., Vacek, Z., Vacek, S., 2016: Nonlinear mixed effect height-diameter model for mixed species forests in the central part of the Czech Republic. Journal of Forest Science, 62:470–484. Search in Google Scholar

Schär, C., Vidale, P. L., Lüthi, D., Frei, C., Häberli, C., Liniger, M. A. et al., 2004: The role of increasing temperature variability in European summer heatwaves. Nature, 427:332–336. Search in Google Scholar

Schröder, J., Rohle, H., Gerold, D., Munder, K., 2007: Modeling individual-tree growth in stands under forest conversion in East Germany. European Journal of Forest Research, 126:459–472. Search in Google Scholar

Schröder, J., Michel, A., Kätzel, R., Degenhardt, A., 2009: Bestand und Bewirtschaftung. In: Elmer, M., Kätzel, R., Bens, O., Bues, C.-T., Sonntag, H., Hüttl, R. F. (eds.): Nachhaltige Bewirtschaftung von Eichen-Kiefern-Mischbeständen. München, Oekon, p. 45–65. (In German). Search in Google Scholar

Schua, K., Fischer, H., Lehman, B., Wagner, S., 2007: Wirkungen einzelbaumweise eingemischter Trauben-Eichen (Quercus petraea [Matt.] Liebl.) auf den Oberbodenzustand in Kiefernbeständen (Pinus sylvestris L.). Allgemeine Forst und Jagdzeitung, 178:172–179. (In German). Search in Google Scholar

Schueler, S., Schlünzen, K. H., 2006: Modeling of oak pollen dispersal on the landscape level with a mesoscale atmospheric model. Environmental Modeling and Assessment, 11:179–194. Search in Google Scholar

Slodičák, M., Novák, J., 2007: Thinning of forest stands of the main forest tree species. Lesnický průvodce, 4/2007. Strnady, Výzkumný ústav lesního hospodářství a myslivosti, v. v. i., 46 p. (In Czech). Search in Google Scholar

Sohar, K., Helama, S., Laazznelaid, A., Raisio, J., Tuomenvirta, H., 2014: Oak decline in a Southern Finnish forest as affected by a drought sequence. Geochronometria, 41:92–103. Search in Google Scholar

Spellmann, H., Albert, M., Schmidt, M., Sutmöller, J., Overbeck, M., 2011: Waldbauliche Anpassungsstrategien für veränderte Klimaverhältnisse. AFZ-Der-Wald, 11:19–23. (In German). Search in Google Scholar

Steckel, M., Heym, M., Wolff, B., Reventlow, D. O. J., Pretzsch, H., 2019: Transgressive overyielding in mixed compared with monospecific Scots pine (Pinus sylvestris L.) and oak (Quercus robur L., Quercus petraea [Matt.] Liebl.) stands – Productivity gains increase with annual water supply. Forest Ecology and Management, 439:81–96. Search in Google Scholar

Steckel, M., del Río, M., Heym, M., Aldea, J., Bielak, K., Brazaitis G. et al., 2020: Species mixing reduces drought susceptibility of Scots pine (Pinus sylvestris L.) and oak (Quercus robur L., Quercus petraea [Matt.] Liebl.) – Site water supply and fertility modify the mixing effect. Forest Ecology and Management, 461:117908. Search in Google Scholar

Stojanović, M., Čater, M., Pokorný, R., 2016: Responses in young Quercus petraea: coppices and standards under favourable and drought conditions. Dendrobiology, 76:127–136. Search in Google Scholar

Stojanović, M., Szatniewska, J., Kyselová, I., Pokorný, R., Čater, M., 2017: Transpiration and water potential of young Quercus petraea [M.] Liebl. coppice sprouts and seedlings during favourable and drought conditions. Journal of Forest Science, 63:313–323. Search in Google Scholar

Svoboda, P., 1955: Forest tree species and their stands. Praha, Státní zemědělské nakladatelství, 573 p. (In Czech). Search in Google Scholar

Šimková, M., Vacek, S., Šimůnek, V., Vacek, Z., Cukor, J., Hájek, V. et al., 2023: Turkey oak (Quercus cerris L.) resilience to climate change: Insights from coppice forests in Southern and Central Europe. Forests, 14:2403. Search in Google Scholar

Šimůnek, V., Vacek, Z., Vacek, S., 2020: Solar cycles in salvage logging: National data from the Czech Republic confirm significant correlation. Forests, 11:973. Search in Google Scholar

Štefančík, I., 2021: Development of oak stand under different initial tending. Zprávy lesnického výzkumu, 66:73–85. Search in Google Scholar

Štefančík, I., Pástor, M., 2023: Comparison of qrowth of northern red oak (Quercus rubra L.) and durmast oak (Quercus petraea [Mattusch.] Liebl.) under similar growth conditions. Central European Forestry Journal, 69:133–141. Search in Google Scholar

Thomas, F. M., Blank, R., Hartmann, G., 2002: Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. Forest Pathology, 32:277–307. Search in Google Scholar

Tkaczyk, M., Sikora, K., Galko, J., Kunca, A., Milenković, I., 2020: Isolation and pathogenicity of Phytophthora species from sessile oak (Quercus petraea [Matt.] Liebl.) stands in Slovakia. Forest Pathology, 50:e12632. Search in Google Scholar

Tkaczyk, M., 2023: Worldwide review of bacterial diseases of oaks (Quercus sp.) and their potential threat to trees in Central Europe. Forestry, 96:425–433. Search in Google Scholar

Toigo, M., Nicolas, M., Jonard, M., Croisé, L., Nageleisen, L.-M., Jactel, H., 2020: Temporal trends in tree defoliation and response to multiple biotic and abiotic stresses. Forest Ecology and Management, 477:118476. Search in Google Scholar

Toigo, M., Vallet, P., Perot, T., Bontemps, J.-D., Piedallu, C., Courbaud, B., 2015: Overyielding in mixed forests decreases with site productivity. Journal of Ecology, 103:502–512. Search in Google Scholar

Tyree, M. T., Cochard, H., 1996: Summer and winter embolism in oak: impact on water relations. Annals of Forest Science, 53:173–180. Search in Google Scholar

Unrau, A., Becker, G., Spinelli, R., Lazdina, D., Magagnotti, N., Nicolescu, V.-N. et al., 2018: Coppice forests in Europe. Freiburg im Breisgau, Albert Ludwig University of Freiburg, 392 p. Search in Google Scholar

Úradníček, L., Maděra, P., 2001: Woody species of the Czech Republic. Písek, Matice lesnická, spol. s r. o., 333 p. (In Czech). Search in Google Scholar

Vacek, S., Vacek, Z., Bílek, L., Simon, J., Remeš, J., Hůnová, I. et al., 2016: Structure, regeneration and growth of Scots pine (Pinus sylvestris L.) stands with respect to changing climate and environmental pollution. Silva Fennica, 50:1564. Search in Google Scholar

Vacek, Z., Cukor, J., Vacek, S., Podrázský, V., Linda, R., Kovařík, J., 2018a: Forest biodiversity and production potential of post-mining landscape: opting for afforestation or leaving it to spontaneous development? Central European Forestry Journal, 64:116–126. Search in Google Scholar

Vacek, Z., Vacek, S., Bílek, L., Král, J., Ulbrichová, I., Simon, J. et al., 2018b: Impact of applied silvicultural systems on spatial pattern of hornbeam-oak forests. Central European Forestry Journal, 64:33–45. Search in Google Scholar

Vacek, S., Prokůpková, A., Vacek, Z., Bulušek, D., Šimůnek, V., Králíček, I. et al., 2019a: Growth response of mixed beech forests to climate change, various management and game pressure in Central Europe. Journal of Forest Science, 65:331–345. Search in Google Scholar

Vacek, S., Vacek, Z., Ulbrichová, I., Bulušek, D., Prokůpková, A., Král, J. et al., 2019b: Biodiversity dynamics of differently managed lowland forests left to spontaneous development in Central Europe. Austrian Journal of Forest Science, 136:249–282. Search in Google Scholar

Vacek, Z., Prokůpková, A., Vacek, S., Bulušek, D., Šimůnek, V., Hájek, I. et al., 2021: Mixed vs. monospecific mountain forests in response to climate change: structural and growth perspectives of Norway spruce and European beech. Forest Ecology and Management, 488:119019. Search in Google Scholar

Vacek, Z., Vacek, S., Cukor, J., 2023: European forests under global climate change: Review of tree growth processes, crises and management strategies. Journal of Environmental Management, 332:117353. Search in Google Scholar

Vančura, K., Šimková, M., Vacek, Z., Vacek, S., Gallo, J., Šimůnek, V. et al., 2022: Effects of environmental factors and management on dynamics of mixed calcareous forests under climate change in Central European lowlands. Dendrobiology, 87:79–100. Search in Google Scholar

Vanhellemont, M., Sousa-Silva, R., Maes, S. L., Van den Bulcke, J., Hertzog, L., De Groote, S. R. E. et al., 2019: Distinct growth responses to drought for oak and beech in temperate mixed forests. Science of The Total Environment, 650:3017–3026. Search in Google Scholar

Vavrčík, H., Gryc, V., 2012: Analysis of the annual ring structure and wood density relations in English oak and Sessile oak. Wood Research, 57:573–580. Search in Google Scholar

Vejpustková, M., Buriánek, V., Čihák, T., Fabiánek, P., Fadrhonsová, V., Neudertová-Hellebrandová, K. et al., 2019: Monitoring of forest condition in the Czech Republic in frame of ICP Forests programme and follow-up projects. Strnady, Forestry and Game Management Research Institute, 92 p. Search in Google Scholar

Vigué, J., Mikulka, L., 2010: Practical book on wood. Čestlice, Rebo, 427 p. (In Czech). Search in Google Scholar

Vose, J. M., Allen, H. L., 1988: Leaf-area, stemwood growth, and nutrition relationships in loblollypine. Forest Science, 34:547–563. Search in Google Scholar

Vospernik, S., Heym, M., Pretzsch, H., Pach, M., Steckel, M., Aldea, J. et al., 2023: Tree species growth response to climate in mixtures of Quercus robur/Quercus petraea and Pinus sylvestris across Europe – a dynamic, sensitive equilibrium. Forest Ecology and Management, 530:120753. Search in Google Scholar

Wiley, E., Huepenbecker, S., Casper, B. B., Helliker, B. R., 2013: The effects of defoliation on carbon allocation: can carbon limitation reduce growth in favour of storage? Tree Physiology, 33:1216–1228. Search in Google Scholar

Zang, C., Rothe, A., Weis, W., Pretzsch, H., 2011: Zur Baumarteneignung bei Klimawandel: Ableitung der Trockenstress-Anfalligkeit wichtiger Waldbaumarten aus Jahrringbreiten. Allgemeine Forst- und Jagdzeitung, 182:98–112. (In German). Search in Google Scholar

Zerbe, S., 2002: Restoration of natural broad-leaved woodland in Central Europe on sites with coniferous forest plantations. Forest Ecology and Management, 167:27–42. Search in Google Scholar

MZe, 2019: Report on the state of forests and forestry in the Czech Republic in 2018. Prague, Ministry of Agriculture, 114 p. (In Czech). Search in Google Scholar

MZe, 2020: Report on the state of forests and forestry in the Czech Republic in 2019. Prague, Ministry of Agriculture, 128 s. (In Czech). Search in Google Scholar

eISSN:
2454-0358
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Plant Science, Ecology, other