INFORMAZIONI SU QUESTO ARTICOLO

Cita

Abdel-Hafez S.I., Abo-Elyousr K.A., Abdel-Rahim I.R., 2015. Leaf surface and endophytic fungi associated with onion leaves and their antagonistic activity against Alternaria porri. Czech Mycol. 67, 1-22.10.33585/cmy.67101Search in Google Scholar

Abobatta W.F., 2018. Nanotechnology application in agriculture. Acta Sci. Agric. 26, 99-102.Search in Google Scholar

Agrios G.N., 2001. Fitopatología. 2nd Edition. Limusa. Mexico D.F.Search in Google Scholar

Al-Naamani L., Dutta J., Dobretsov S., 2018. Nanocomposite zinc oxide-chitosan coatings on polyethylene films for extending storage life of okra (Abelmoschus esculentus). Nanomaterials 8(7), 479.10.3390/nano8070479Search in Google Scholar

Andrews J.M., 2001. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemoth. 48(1), 5-16.10.1093/jac/48.suppl_1.5Search in Google Scholar

Anukwuorji C.A., Anuagasi C.L., Okigbo R.N., 2013. Occurrence and control of fungal pathogens of potato (Ipomoea batatas L. Lam) with plant extracts. Intern. J. Pharm. Technol. Res. 2(3), 273-289.Search in Google Scholar

Arciniegas-Grijalba P.A., Patiño-Portela M.C., Mosquera-Sánchez L.P., Guerrero-Vargas J.A., Rodríguez-Páez J.E., 2017. ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl. Nanosci. 7(5), 225-241. ‏10.1007/s13204-017-0561-3Search in Google Scholar

Aydin S.B., Hanley L., 2010. Antibacterial activity of dental composites containing zinc oxide nanoparticles. J. Biomed. Mater. Res. Part B: Appl. Biomat. 94(1), 22-31.10.1002/jbm.b.31620Search in Google Scholar

Bauer A.W., Kirby W.M., Sherris J.C., Turck M., 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45(4), 493-496.10.1093/ajcp/45.4_ts.493Search in Google Scholar

Bonham M., O’Connor J.M., Alexander H.D., Coulter J., Walsh P.M., Mcanena L.B., et al., 2003. Zinc supplementation has no effect on circulating levels of peripheral blood leucocytes and lymphocyte subsets in healthy adult men. Brit. J. Nutr. 89(5), 695-703.10.1079/BJN2003826Search in Google Scholar

Bradford M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72, 248-254.10.1016/0003-2697(76)90527-3Search in Google Scholar

Buzby J.C., Farah-Wells H., Hyman J., 2014. The estimated amount, value, and calories of postharvest food losses at the retail and consumer levels in the United States. USDA-ERS Economic Information Bulletin 121.10.2139/ssrn.2501659Search in Google Scholar

Clark C.A., Da Silva W.L., Arancibia R.A., Main J.L., Schultheis J.R., Van-Esbroeck Z.P., et al., 2013. Incidence of end rots and internal necrosis in sweet potato is affected by cultivar, curing, and ethephon defoliation. Hort. Technol. 23(6), 886-897.10.21273/HORTTECH.23.6.886Search in Google Scholar

Debeaufort F., Quezada-Gallo J.A., Voilley A., 1998. Edible films and coatings: tomorrows packaging: a review. Crit. Rev. Food Sci. Nut. 38, 299-313.10.1080/104086998912742199626488Search in Google Scholar

Du R.L., Chang J., Nis Y., Zhai W.Y., Wang J.Y., 2006. Characterization and in vitro bioactivity of zinc-containing bioactive glass and glass-ceramics. J. Biomat. Appl. 20(4), 341-360.10.1177/088532820605453516443621Search in Google Scholar

Edmuds B.A., Clark C.A., Villordon A.Q., Holmes G.J., 2015. Relationships of preharvest weather conditions and soil factors to susceptibility of sweetpotato to postharvest decay caused by Rhizopus stolonifer and Dickey adadantii. Plant Dis. 99(6), 848-857.10.1094/PDIS-11-14-1143-RE30699536Search in Google Scholar

Edmunds B.A., Holmes G.J., 2009. Evaluation of alternative decay control products for control of postharvest Rhizopus soft rot of sweet potatoes. Plant Health Progress, 1-10.10.1094/PHP-2009-0206-01-RSSearch in Google Scholar

Emamifar A., Kadivar M., Shahedi M., Soleimanian-Zad S., 2010. Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innov. Food Sci. Emer. Technol. 11(4), 742-748.10.1016/j.ifset.2010.06.003Search in Google Scholar

Espitia P.J.P., Soares N.D.F.F., Dos Reis Coimbra J.S., De Andrade N.J., Cruz R.S., Medeiros E.A.A., 2012. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Biopr. Technol. 5(5), 1447-1464.10.1007/s11947-012-0797-6Search in Google Scholar

FAO [Food and Agriculture Organization], 2011. Global food losses and food waste. Study conducted for the International congress SAVE FOOD! At Interpack, Düsseldorf.Search in Google Scholar

Fu P., Xia Q., Hwang H-M., Ray P.C., Yu H., 2014. Mechanisms of nanotoxicity: generation of reactive oxygen species. J. Food Drug Anal. 22, 64-75.10.1016/j.jfda.2014.01.00524673904Search in Google Scholar

Galstyan V., Bhandari M.P., Sberveglieri V., Sberveglieri G., Comini E., 2018. Metal oxide nanostructures in food applications: Quality control and packaging. Chemosensors 6(2), 16.10.3390/chemosensors6020016Search in Google Scholar

Gunalan S., Sivaraj R., Rajendran V., 2012. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Progress Natural Sci.: Material Inter. 22(6), 693-700.10.1016/j.pnsc.2012.11.015Search in Google Scholar

He X., Hwang H.M., 2016. Nanotechnology in food science: Functionality, applicability, and safety assessment. J. Food Drug Anal. 24(4), 671-681.10.1016/j.jfda.2016.06.00128911604Search in Google Scholar

He X., Liu Y., Mustapha A., Lin M., 2011. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res.166(3), 207-215.10.1016/j.micres.2010.03.00320630731Search in Google Scholar

Hernández-Lauzardo A.N., Bautista-Baños S., Velázquez-Del Valle M.G., Trejo-Espino J.L., 2006. Identification of Rhizopus stolonifer (Ehrenb.: Fr.) Vuill., causal agent of Rhizopus rot disease of fruits and vegetables. Revis. Mex. de Fitopatol. 24(1), 65-69.Search in Google Scholar

Hertel T.W., 2015. The challenges of sustainably feeding a growing planet. Food Secur. 7, 185-198.10.1007/s12571-015-0440-2Search in Google Scholar

Holmes G.J., Stange R.R., 2002. Influence of wound type and storage duration on susceptibility of sweet potatoes to Rhizopus soft rot. Plant Dis. 86(4), 345-348.10.1094/PDIS.2002.86.4.345Search in Google Scholar

Hooper P.L., Visconti L., Garry P.J., Johnson G.E., 1980. Zinc lowers high-density lipoproteincholesterol levels. J. Am. Med. Assoc. 244,1960-1.10.1001/jama.244.17.1960Search in Google Scholar

Hussain A., Shrivastav A., Jain S.K., Baghel R.K., Rani S., Agrawal M.K., 2012. Cellulolytic enzymatic activity of soft rot filamentous fungi Paecilomyces variotii. Advan. Biores. 3(3), 10-17.Search in Google Scholar

Jamdagni P., Khatri P., Rana J.S., 2018a. Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbortristis and their antifungal activity. J. King Saud. Univ-Sci. 30(2),168-175.10.1016/j.jksus.2016.10.002Search in Google Scholar

Jamdagni P., Rana J.S., Khatri P., Nehra K., 2018b. Comparative account of antifungal activity of green and chemically synthesized zinc oxide nanoparticles in combination with agricultural fungicides. Int. J. Nano Dimension 9(2), 198-208.Search in Google Scholar

Jin T., Sun D., Su J.Y., Zhang H., Sue H., 2009. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7. J. Food Sci. 74(1), 46-52.10.1111/j.1750-3841.2008.01013.xSearch in Google Scholar

Jones N., Ray B., Ranjit K.T., Manna A.C., 2008. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 279(1), 71-76.10.1111/j.1574-6968.2007.01012.xSearch in Google Scholar

Kathiresan K., Manivannan S., 2006. α-amylase production by Penicillium fellutanum isolated from mangrove rhizosphere soil. Afr. J. Biotechnol. 5, 829-832.Search in Google Scholar

Lakshmi S.J., Roopa Bai R.S., Sharanagouda H., Ramachandra C.T., Nadagouda S., Nidoni U., 2018. Effect of biosynthesized zinc oxide nanoparticles coating on quality parameters of fig (Ficus carica L.) fruit. J. Pharm. Phytochem. 7(3), 10-14.Search in Google Scholar

Lee B.W., Koo J.H., Lee T.S., Kim Y.H., Hwang J.S., 2013. Synthesis of ZnO nanoparticles via simple wet-chemical routes. Advan. Mater. Res. 699, 133-137.10.4028/www.scientific.net/AMR.699.133Search in Google Scholar

Lewis M.R., Kokan L., 1998. Zinc gluconate: acute ingestion. J. Toxicol. Clin. Toxicol. 36, 99-101.10.3109/15563659809162595Search in Google Scholar

Li P., Barth M.M., 1998. Impact of edible coatings on nutritional and physiological changes in lightly processed carrots. Postharv. Biol. Technol.14, 51-60.10.1016/S0925-5214(98)00020-9Search in Google Scholar

Li X., Li W., Jiang Y., Ding Y., Yun J., Tang Y., et al., 2011. Effect of nano ZnO coated active packaging on quality of fresh cut “Fuji” apple. Intern. J. Food Sci. Technol. 46(9), 1947-1955.10.1111/j.1365-2621.2011.02706.xSearch in Google Scholar

Lin D., Zhao Y., 2007. Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Compreh. Revi. Food Sci. Food Saf. 6(3), 60-75.10.1111/j.1541-4337.2007.00018.xSearch in Google Scholar

Mcclung J.P., Scrimgeour A.G., 2005. Zinc: an essential trace element with potential benefits to soldiers. Milit. Med. 170(12), 1048-1052.10.7205/MILMED.170.12.1048Search in Google Scholar

Meng X., Zhang M., Adhikari B., 2014. The effects of ultrasound treatment and nanozinc oxide coating on the physiological activities of fresh-cut kiwi fruit. Food Biopro. Technol. 7(1), 126-132.10.1007/s11947-013-1081-0Search in Google Scholar

Merzendorfer H., 2006. Insect chitin synthases: a review. J. Comp. Physiol. B 176, 1-15.10.1007/s00360-005-0005-316075270Search in Google Scholar

Miller G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analyt. Chemi. 31(3), 426-428.10.1021/ac60147a030Search in Google Scholar

Min S., Krochta J.M., 2005. Antimicrobial films and coatings for fresh fruit and vegetables. In: Improving the safety of fresh fruit and vegetables. W. Jongen (Ed.), CRC Press, New York, USA, 455-492.10.1533/9781845690243.3.454Search in Google Scholar

Nelson S.C., 2009. Rhizopus soft rot of sweet potato. University of Hawaii at Manoa, College of Tropical Agriculture and Human Resources, Cooperative Extension Service.Search in Google Scholar

Park J., Choi S., Moon H., Seo H., Kim J., Hong S-P., et al., 2017. Antimicrobial spray nanocoating of supramolecular Fe (III)-tannic acid metal-organic coordination complex: applications to shoe insoles and fruits. Sci. Rep. 7, 6980.10.1038/s41598-017-07257-x553909828765556Search in Google Scholar

Ragaert P., Devlieghere F., Debevere J. 2007. Role of microbiological and physiological spoilage mechanisms during storage of minimally processed vegetables. Postharv. Biol. Technol. 44(3), 185-194.10.1016/j.postharvbio.2007.01.001Search in Google Scholar

Reynolds T.W., Waddington S.R., Anderson C.L., Chew A., True Z., Cullen A., 2015. Environmental impacts and constraints associated with the production of major food crops in sub-Saharan Africa and South Asia. Food Secur. 7, 795-822.10.1007/s12571-015-0478-1Search in Google Scholar

Romero M., CantóN E., PemáN J., Gobernado M., 2005. Antifúngicos inhibidores de la síntesis del glucano. Rev. Esp. Quimioter. 18, 281-299.Search in Google Scholar

Sardella D., Gatt R., Valdramidis V.P., 2018. Assessing the efficacy of zinc oxide nanoparticles against Penicillium expansum by automated turbidimetric analysis. Mycology 9(1), 43-48.10.1080/21501203.2017.1369187605906930123660Search in Google Scholar

Sharma R.M., Singh R.R., 2000. Harvesting, postharvest handling and physiology of fruits and vegetables. In: Postharvest technology of fruits and vegetables Vol. 1. Handling, processing, fermentation and waste management. L.R.Verma and V.K. Joshi (Eds), Indus Publishing Co., Tagore Garden, New Delhi, India, 94-147.Search in Google Scholar

Sogvar O.B., Saba M.K., Emamifar A., Hallaj R., 2016. Influence of nano-ZnO on microbial growth, bioactive content and postharvest quality of strawberries during storage. Innov. Food Sci. Emer. Technol. 35, 168-176.10.1016/j.ifset.2016.05.005Search in Google Scholar

Solomons N.W., 1998. Mild human zinc deficiency produces an imbalance between cell-mediated and humoral immunity. Nutr. Rev. 56, 27-8.10.1111/j.1753-4887.1998.tb01656.x9481116Search in Google Scholar

Tang B., Pan H., Tang W., Zhang Q., Ding L., Zhang F., 2012. Fermentation and purification of cellulase from a novel strain Rhizopus stolonifer var. reflexus TP-02. Biom. Bioen. 36, 366-372.10.1016/j.biombioe.2011.11.003Search in Google Scholar

Thirumavalavan M., Huang K.L., Lee J.F., 2013. Preparation and morphology studies of nano zinc oxide obtained using native and modified chitosans. Materials 6(9), 4198-4212.10.3390/ma6094198545264728788326Search in Google Scholar

Vogler B.K., Ernst E., 1999. Aloe vera: A systematic review of its clinical effectiveness. Brit. J. Gen. Pract. 49(447), 823-828.Search in Google Scholar

West P.C., Gerber J.S., Engstrom P.M., Mueller N.D., Brauman K.A., Carlson K.M., et al., 2014. Leverage points for improving food security and the environment. Science 345, 325-327.10.1126/science.124606725035492Search in Google Scholar

Wu H., Yin J-J., Wamer W.G., Zeng M., Lo Y.M., 2014. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. J. Food Drug Anal. 22, 86-94.10.1016/j.jfda.2014.01.00724673906Search in Google Scholar

Xie Y., He Y., Irwin P.L., Jin T., Shi X., 2011. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 77(7), 2325-2331.10.1128/AEM.02149-10306744121296935Search in Google Scholar

Yehia R.S., Ahmed O.F., 2013. In vitro study of the antifungal efficacy of zinc oxide nanoparticles against Fusarium oxysporum and Penicilium expansum. Afr. J. Microb. Res., 7(19): 1917-1923.10.5897/AJMR2013.5668Search in Google Scholar

Zhao L., Liu L., Ma Y., 2009. Preservation of apricot by chitosan nano-ZnO film. Food Res. Develop. 30(2), 126-128.Search in Google Scholar

Zucolotto V., Dura´N N., Guterres S., Alves L., 2013. Nanotoxicology: materials, methodologies, and assessments. Springer Science & Business Media, New York, USA.Search in Google Scholar

eISSN:
2083-5965
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Life Sciences, Plant Science, Zoology, Ecology, other