This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abdalla, N. et al. 2022. An academic and technical overview on plant micropropagation challenges. Horticulturae, 8 (8), 677. DOI: 10.3390/horticulturae8080677.AbdallaN.2022An academic and technical overview on plant micropropagation challengesHorticulturae8867710.3390/horticulturae8080677Open DOISearch in Google Scholar
Álvarez-López, V., Zappelini, C., Durand, A., Chalot, M. 2020. Pioneer trees of Betula pendula at a red gypsum landfill harbour specific structure and composition of root-associated microbial communities. Science of the Total Environment, 726, 138530. DOI: 10.1016/j.scitotenv.2020.138530.Álvarez-LópezV.ZappeliniC.DurandA.ChalotM.2020Pioneer trees of Betula pendula at a red gypsum landfill harbour specific structure and composition of root-associated microbial communitiesScience of the Total Environment72613853010.1016/j.scitotenv.2020.138530Open DOISearch in Google Scholar
Amin, M.N., Jaiswal, V.S. 1993. In vitro response of apical bud explants from mature trees of jackfruit (Artocarpus heterophyllus). Plant Cell, Tissue and Organ Culture, 33, 59–65. DOI: 10.1007/BF01997599.AminM.N.JaiswalV.S.1993In vitro response of apical bud explants from mature trees of jackfruit (Artocarpus heterophyllus)Plant Cell, Tissue and Organ Culture33596510.1007/BF01997599Open DOISearch in Google Scholar
Ashburner, K., McAllister, A. 2013. The genus Betula: a taxonomic revision of birches. Kew Press, London.AshburnerK.McAllisterA.2013The genus Betula: a taxonomic revision of birchesKew PressLondonSearch in Google Scholar
Becerra, D., Forero, A., Góngora, G. 2004. Age and physiological condition of donor plants affect in vitro morphogenesis in leaf explants of Passiflora edulis f. flavicarpa. Plant Cell, Tissue and Organ Culture 79, 87–90. DOI: 10.1023/B:TICU.0000049440.10767.29.BecerraD.ForeroA.GóngoraG.2004Age and physiological condition of donor plants affect in vitro morphogenesis in leaf explants of Passiflora edulis f. flavicarpaPlant Cell, Tissue and Organ Culture79879010.1023/B:TICU.0000049440.10767.29Open DOISearch in Google Scholar
Beck, P., Caudullo, G., de Rigo, D., Tinner, W. 2016. Betula pendula, Betula pubescens and other birches in Europe: distribution, habitat, usage and threats. In: European atlas of forest tree species (eds. J. San-Miguel-Ayanz, D. de Rigo, G. Caudullo, T.H. Durrant, A. Mauri). Publication Office of the European Union, Luxembourg, 70–73. Available at https://w3id.org/mtv/FISE-Comm/v01/e010226.BeckP.CaudulloG.de RigoD.TinnerW.2016Betula pendula, Betula pubescens and other birches in Europe: distribution, habitat, usage and threatsIn:European atlas of forest tree specieseds.San-Miguel-AyanzJ.de RigoD.CaudulloG.DurrantT.H.MauriA.Publication Office of the European UnionLuxembourg7073Available at https://w3id.org/mtv/FISE-Comm/v01/e010226Search in Google Scholar
Bertelsen, C. 2020. Betula: Ecology and uses. Nova Science Publishers.BertelsenC.2020Betula: Ecology and usesNova Science PublishersSearch in Google Scholar
Brand, M., Lineberger, R. 1992. In vitro rejuvenation of Betula (Betulaceae): morphological evaluation. American Journal of Botany, 79 (6), 618–625.BrandM.LinebergerR.1992In vitro rejuvenation of Betula (Betulaceae): morphological evaluationAmerican Journal of Botany796618625Search in Google Scholar
Bridgen, M., Van Houtven, W., Eeckhaut, T. 2018. Plant tissue culture techniques for breeding. In: Ornamental crops: handbook of plant breeding (ed. J. Van Huylenbroeck). Springer, Cham. DOI: 10.1007/978-3-319-90698-0_6.BridgenM.Van HoutvenW.EeckhautT.2018Plant tissue culture techniques for breedingIn:Ornamental crops: handbook of plant breedinged.Van HuylenbroeckJ.SpringerCham10.1007/978-3-319-90698-0_6Open DOISearch in Google Scholar
Cardoso, J., Sheng Gerald, L., Teixeira da Silva, J. 2018. Micropropagation in the twenty-first century. In: Plant cell culture protocols. Methods in molecular biology (eds. V.M. Loyola-Vargas, N. Ochoa-Alejo). Humana Press, New York, 17–46. DOI: 10.1007/978-1-4939-8594-4_2 17–46.CardosoJ.Sheng GeraldL.Teixeira da SilvaJ.2018Micropropagation in the twenty-first centuryIn:Plant cell culture protocols. Methods in molecular biologyeds.Loyola-VargasV.M.Ochoa-AlejoN.Humana PressNew York174610.1007/978-1-4939-8594-4_2 17–46Open DOISearch in Google Scholar
Chen, K. et al. 2024. BpWOX11 promotes adventitious root formation in Betula pendula. BMC Plant Biology, 24, 17. DOI: 10.1186/s12870-023-04703-z.ChenK.2024BpWOX11 promotes adventitious root formation in Betula pendulaBMC Plant Biology241710.1186/s12870-023-04703-zOpen DOISearch in Google Scholar
Chornobrov, O., Chornobrov, O., Zinovieva, M. 2019. Regenerative ability of plant tissue culture in vitro of silver birch (Betula pendula Roth.). Forestry and Landscape Gardening, 15. Available at https://journals.nubip.edu.ua/index.php/lis/article/view/13264.ChornobrovO.ChornobrovO.ZinovievaM.2019Regenerative ability of plant tissue culture in vitro of silver birch (Betula pendula Roth.)Forestry and Landscape Gardening15Available at https://journals.nubip.edu.ua/index.php/lis/article/view/13264Search in Google Scholar
Chornobrov, O., Melnyk, O., Karpuk, A., Vasylyshyn, R. 2023. Peculiarities of plant adaptation of interspecific hybrid Betula ex vitro. Scientific Horizons, 26 (11), 49–57. DOI: 10.48077/scihor11.2023.49.ChornobrovO.MelnykO.KarpukA.VasylyshynR.2023Peculiarities of plant adaptation of interspecific hybrid Betula ex vitroScientific Horizons2611495710.48077/scihor11.2023.49Open DOISearch in Google Scholar
Chornobrov, O., Tkachova, O. 2021. Optimization of explants in vitro sterilization protocol of some deciduous tree species. Ukrainian Journal of Forest and Wood Science, 12 (3), 80–86. DOI: 10.31548/forest2021.03.007.ChornobrovO.TkachovaO.2021Optimization of explants in vitro sterilization protocol of some deciduous tree speciesUkrainian Journal of Forest and Wood Science123808610.31548/forest2021.03.007Open DOISearch in Google Scholar
Corredoira, E., Costa, R. 2021. Application of tissue culture in plant reproduction. Forests, 12, 342. DOI: 10.3390/f12030342.CorredoiraE.CostaR.2021Application of tissue culture in plant reproductionForests1234210.3390/f12030342Open DOISearch in Google Scholar
Covelo, P., Vidal, N., Rico, S., Vielba, J.M., Reggiardo, M., Sánchez, C. 2018. Performance of culture lines established in vitro from a monumental birch tree. In: Proceedings of the 5th International Conference on the IUFRO Unit 2.09.02 on Clonal Trees in the Bioeconomy Age: Opportunities and Challenges (eds. J.M. Bonga, Y.S. Park, J.F. Trontin), 10–15 September 2018, Coimbra, 25–33.CoveloP.VidalN.RicoS.VielbaJ.M.ReggiardoM.SánchezC.2018Performance of culture lines established in vitro from a monumental birch treeIn:Proceedings of the 5th International Conference on the IUFRO Unit 2.09.02 on Clonal Trees in the Bioeconomy Age: Opportunities and Challengeseds.BongaJ.M.ParkY.S.TrontinJ.F.10–15 September 2018Coimbra2533Search in Google Scholar
Dimitrova, N., Nacheva, L,. Berova, M., Kulpa, D. 2021. Biofertlizer Lumbrical improves the growth and ex vitro acclimatization of micropropagated pear plants. Silva Balcanica, 22, 17–30. DOI: 10.3897/silvabalcanica.22.e57661.DimitrovaN.NachevaL.BerovaM.KulpaD.2021Biofertlizer Lumbrical improves the growth and ex vitro acclimatization of micropropagated pear plantsSilva Balcanica22173010.3897/silvabalcanica.22.e57661Open DOISearch in Google Scholar
Driver, J., Kuniyuki, A. 1984. In vitro propagati on of Paradox Walnutroot stock. HortScience, 19 (4), 507–509.DriverJ.KuniyukiA.1984In vitro propagati on of Paradox Walnutroot stockHortScience194507509Search in Google Scholar
Druege, U. et al. 2019. Molecular and physiological control of adventitious rooting in cuttings: phytohormone action meets resource allocation. Annals of Botany, 123 (6), 929–949.DruegeU.2019Molecular and physiological control of adventitious rooting in cuttings: phytohormone action meets resource allocationAnnals of Botany1236929949Search in Google Scholar
Dubois, H., Verkasalo, E., Claessens, H. 2020. Potential of birch (Betula pendula Roth and B. pubescens Ehrh.) for forestry and forest-based industry sector within the changing climatic and socio-economic context of Western Europe. Forests, 11 (3), 336. DOI: 10.3390/f11030336.DuboisH.VerkasaloE.ClaessensH.2020Potential of birch (Betula pendula Roth and B. pubescens Ehrh.) for forestry and forest-based industry sector within the changing climatic and socio-economic context of Western EuropeForests11333610.3390/f11030336Open DOISearch in Google Scholar
Fedoniuk, T., Pazych, V., Korzh, Z., Melnyk, N., Pitsil, A. 2023. The bioindicative characteristics of the Betula pendula Roth species in the dendrocenoses of the solid household waste landfill’s influence zone. Scientific Horizons, 26 (12), 64–75. DOI: 10.48077/scihor12.2023.64.FedoniukT.PazychV.KorzhZ.MelnykN.PitsilA.2023The bioindicative characteristics of the Betula pendula Roth species in the dendrocenoses of the solid household waste landfill’s influence zoneScientific Horizons2612647510.48077/scihor12.2023.64Open DOISearch in Google Scholar
Gaidamashvili, M., Benelli, C. 2021. Threatened woody plants of Georgia and micropropagation as a tool for in vitro conservation. Agronomy, 11 (6), 1082. DOI: 10.3390/agronomy11061082.GaidamashviliM.BenelliC.2021Threatened woody plants of Georgia and micropropagation as a tool for in vitro conservationAgronomy116108210.3390/agronomy11061082Open DOISearch in Google Scholar
Gangopadhyay, M., Nandi, S., Roy, S.B. 2017. An efficient ex plant sterilization protocol for reducing microbial contamination of Solanum tuberosum CV. Kufri jyoti for establishing micropropagation in rainy season. Journal of Basic and Applied Sciences, 1, 25.GangopadhyayM.NandiS.RoyS.B.2017An efficient ex plant sterilization protocol for reducing microbial contamination of Solanum tuberosum CV. Kufri jyoti for establishing micropropagation in rainy seasonJournal of Basic and Applied Sciences125Search in Google Scholar
Gupta, N., Jain, V., Joseph, M.R., Devi, S. 2020. A Review on micropropagation culture method. Asian Journal of Pharmaceutical Research and Development, 8 (1), 86–93. DOI: 10.22270/ajprd.v8i1.653.GuptaN.JainV.JosephM.R.DeviS.2020A Review on micropropagation culture methodAsian Journal of Pharmaceutical Research and Development81869310.22270/ajprd.v8i1.653Open DOISearch in Google Scholar
Gutiérrez-Nicolás, F., Ravelo, A.G., Zárate, R. 2008. Seed germination and in vitro propagation of Maytenus canariensis through regeneration of adventitious shoots from axillary and apical buds. Biologia plantarum, 52, 173–176. DOI: 10.1007/s10535-008-0038-z.Gutiérrez-NicolásF.RaveloA.G.ZárateR.2008Seed germination and in vitro propagation of Maytenus canariensis through regeneration of adventitious shoots from axillary and apical budsBiologia plantarum5217317610.1007/s10535-008-0038-zOpen DOISearch in Google Scholar
Hahn, E., Kim, S., Paek, K., Lee, Y. 2000. Growth and acclimatization of Chrysanthemum plantlets using bioreactor and hydroponic culture techniques. In: Transplant Production in the 21st Century (eds. C. Kubota, C. Chun). Springer, Netherlands, 274–278.HahnE.KimS.PaekK.LeeY.2000Growth and acclimatization of Chrysanthemum plantlets using bioreactor and hydroponic culture techniquesIn:Transplant Production in the 21st Centuryeds.KubotaC.ChunC.SpringerNetherlands274278Search in Google Scholar
Hasegawa, P.M. 1979. In vitro propagation of rose. HortScience, 14 (5), 610–612.HasegawaP.M.1979In vitro propagation of roseHortScience145610612Search in Google Scholar
Huhtinen, O., Yahyaoglu, Z. 1974. Das frühe Blühen von aus Kalluskulturen herangezogenen Pflänzchen bei der Birke (Betulu pendula Roth). Silvae Genetica, 23, 32–34.HuhtinenO.YahyaogluZ.1974Das frühe Blühen von aus Kalluskulturen herangezogenen Pflänzchen bei der Birke (Betulu pendula Roth)Silvae Genetica233234Search in Google Scholar
Ide, Y. 1987. In vitro clonal propagation of mature Japanese cherry birch. Journal of the Japanese Forestry Society, 69, 161–163.IdeY.1987In vitro clonal propagation of mature Japanese cherry birchJournal of the Japanese Forestry Society69161163Search in Google Scholar
Iliev, I., Besendorfer, V., Peskan, T. 1998. In vitro propagation of Betula pendula ‘Dalecarlica’. In: Progress in botanical research (eds. I. Tsekos, M. Moustakas). Springer, Dordrecht. DOI: 10.1007/978-94-011-5274-7_117.IlievI.BesendorferV.PeskanT.1998In vitro propagation of Betula pendula ‘Dalecarlica’In:Progress in botanical researcheds.TsekosI.MoustakasM.SpringerDordrecht10.1007/978-94-011-5274-7_117Open DOISearch in Google Scholar
Iliev, I., Kitin, P., Funada, R. 2001. Morphological and anatomical study on in vitro root formation of silver birch (Betula pendula Roth.). Propagation of Ornamental Plants, 1, 10–19.IlievI.KitinP.FunadaR.2001Morphological and anatomical study on in vitro root formation of silver birch (Betula pendula Roth.)Propagation of Ornamental Plants11019Search in Google Scholar
Ioannidis, K., Koropouli, P. 2024. Effects of different media and their strengths in in vitro culture of three different Cistus creticus L. populations and their genetic assessment using simple sequence repeat molecular markers. Horticulturae, 10 (1), 104. DOI: 10.3390/horticulturae10010104.IoannidisK.KoropouliP.2024Effects of different media and their strengths in in vitro culture of three different Cistus creticus L. populations and their genetic assessment using simple sequence repeat molecular markersHorticulturae10110410.3390/horticulturae10010104Open DOISearch in Google Scholar
Isah, T. 2023. Explant rejuvenation in the clonal propagation of woody plants. Plant Cell, Tissue and Organ Culture, 154 (3), 209–212. DOI: 10.1007/s11240-023-02520-8.IsahT.2023Explant rejuvenation in the clonal propagation of woody plantsPlant Cell, Tissue and Organ Culture154320921210.1007/s11240-023-02520-8Open DOISearch in Google Scholar
Jonczak, J. et al. 2020. The influence of birch trees (Betula spp.) on soil environment. Forest Ecology and Management, 477 (1). DOI: 10.1016/j.foreco.2020.118486.JonczakJ.2020The influence of birch trees (Betula spp.) on soil environmentForest Ecology and Management477110.1016/j.foreco.2020.118486Open DOISearch in Google Scholar
Kolek, F., Plaza, M., Leier-Wirtz, V., Friedmann, A., Traidl-Hoffmann, C., Damialis, A. 2021. Earlier flowering of Betula pendula Roth in Augsburg, Germany, due to higher temperature, NO2 and urbanity, and relationship with Betula spp. pollen season. International Journal of Environmental Research and Public Health, 18 (19), 10325. DOI: 10.3390/ijerph181910325.KolekF.PlazaM.Leier-WirtzV.FriedmannA.Traidl-HoffmannC.DamialisA.2021Earlier flowering of Betula pendula Roth in Augsburg, Germany, due to higher temperature, NO2 and urbanity, and relationship with Betula spp. pollen seasonInternational Journal of Environmental Research and Public Health18191032510.3390/ijerph181910325Open DOISearch in Google Scholar
Kors, F.T.M. (ed.). 2010/2012. Plant cell and tissue culture. Phytopathology. Biochemicals. Duchefa Biochemie B.V., Haarlem, Netherlands. Available at http://brochure.duchefa-biochemie.com/Duchefa_catalogus_2010_2012/.KorsF.T.M.(ed.)2010/2012Plant cell and tissue culture. Phytopathology. BiochemicalsDuchefa Biochemie B.V.Haarlem, NetherlandsAvailable at http://brochure.duchefa-biochemie.com/Duchefa_catalogus_2010_2012/Search in Google Scholar
Kozai, T., Afreen, F., Zobayed, S. (eds.). 2005. Photoautotrophic (sugar-free medium) micropropagation as a new micropropagation and transplant production system. Springer Science & Business Media.KozaiT.AfreenF.ZobayedS.(eds.)2005Photoautotrophic (sugar-free medium) micropropagation as a new micropropagation and transplant production systemSpringer Science & Business MediaSearch in Google Scholar
Kulus, D., Tymoszuk, A. 2024. Advancements in in vitro technology: A comprehensive exploration of micropropagated plants. Horticulturae, 10 (1), 88. DOI: 10.3390/horticulturae10010088.KulusD.TymoszukA.2024Advancements in in vitro technology: A comprehensive exploration of micropropagated plantsHorticulturae1018810.3390/horticulturae10010088Open DOISearch in Google Scholar
Kumar, V., Radha, A., Kumar Chitta, S. In vitro plant regeneration of fig (Ficus carica L. cv. gular) using apical buds from mature trees. Plant Cell Reports, 17, 717–720. DOI: 10.1007/s002990050471.KumarV.RadhaA.Kumar ChittaS.In vitro plant regeneration of fig (Ficus carica L. cv. gular) using apical buds from mature treesPlant Cell Reports1771772010.1007/s002990050471Open DOISearch in Google Scholar
Kushnir, H., Sarnatska, V. 2005. Microclonal propagation of plants, theory and practice (in Ukrainian). Naukova Dumka, Kyiv.KushnirH.SarnatskaV.2005Microclonal propagation of plants, theory and practice (in Ukrainian)Naukova DumkaKyivSearch in Google Scholar
Lloyd, G., McCown, B. 1980. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. International Plant Propagator’s Society, 30, 421–427.LloydG.McCownB.1980Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip cultureInternational Plant Propagator’s Society30421427Search in Google Scholar
Magnusson, V., Castillo, C., Dai, W. 2009. Micropropagation of two elite birch species through shoot proliferation and regeneration. Acta Horticulturae, 812, 223–230. DOI: 10.17660/ActaHortic.2009.812.28.MagnussonV.CastilloC.DaiW.2009Micropropagation of two elite birch species through shoot proliferation and regenerationActa Horticulturae81222323010.17660/ActaHortic.2009.812.28Open DOISearch in Google Scholar
Mamchur, V. 2017. Selection of sterilizer, introduction to the culture and propagation of plant material of Ailantus altissima (Mill.) Swingle species (in Ukrainian). Scientific Bulletin of UNFU, 27 (4), 56–59. DOI: 10.15421/40270412.MamchurV.2017Selection of sterilizer, introduction to the culture and propagation of plant material of Ailantus altissima (Mill.) Swingle species (in Ukrainian)Scientific Bulletin of UNFU274565910.15421/40270412Open DOISearch in Google Scholar
Matskevych, V.V. 2020. Microclonal propagation of plant species in vitro and their postaseptic adaptation (in Ukrainian). Doctoral dissertation in the specialty “breeding and seed production”. Sumy National Agrarian University.MatskevychV.V.2020Microclonal propagation of plant species in vitro and their postaseptic adaptation (in Ukrainian)Doctoral dissertation in the specialty “breeding and seed production”. Sumy National Agrarian UniversitySearch in Google Scholar
Matskevych, V., Podgaetskyi, A., Filipova, L. 2019. Microclonal propagation of certain plant species (technology protocols): a scientific and practical guide (in Ukrainian). Bila Tserkva National Agrarian University.MatskevychV.PodgaetskyiA.FilipovaL.2019Microclonal propagation of certain plant species (technology protocols): a scientific and practical guide (in Ukrainian)Bila Tserkva National Agrarian UniversitySearch in Google Scholar
Matskevych, V., Yukhnovskyi, V., Kimeichuk, I., Matskevych, O., Shyta, O. 2022. Peculiarities of determining the morphogenesis of plants Corylus avellana L. and Prunus dulcis (Mill.) D.A.Webb. in vitro culture. Folia Forestalia Polonica, Series A – Forestry, 65 (1), 1–14.MatskevychV.YukhnovskyiV.KimeichukI.MatskevychO.ShytaO.2022Peculiarities of determining the morphogenesis of plants Corylus avellana L. and Prunus dulcis (Mill.) D.A.Webb. in vitro cultureFolia Forestalia Polonica, Series A – Forestry651114Search in Google Scholar
McClelland, M. Smith, M., Carothers, Z. 1990. The effects of in vitro and ex vitro root initiation on subsequent microcutting root quality in three woody plants. Plant Cell, Tissue and Organ Culture, 23, 115–123. DOI: 10.1007/BF00035831.McClellandM.SmithM.CarothersZ.1990The effects of in vitro and ex vitro root initiation on subsequent microcutting root quality in three woody plantsPlant Cell, Tissue and Organ Culture2311512310.1007/BF00035831Open DOISearch in Google Scholar
Meier-Dinkel, A. 1992. Micropropagation of birches (Betula spp.). In: Biotechnology in agriculture and forestry. Vol. 18. High-tech and micropropagation II (ed. Y.P.S. Bajaj). Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-76422-6_3.Meier-DinkelA.1992Micropropagation of birches (Betula spp.)In:Biotechnology in agriculture and forestry. Vol. 18. High-tech and micropropagation IIed.BajajY.P.S.SpringerBerlin, Heidelberg10.1007/978-3-642-76422-6_3Open DOISearch in Google Scholar
Mohammed, A., Arkwazee, H. 2024. Micrografting of Pistacia vera L.: A review. SVU-International Journal of Agricultural Sciences, 6 (1), 61–72. DOI: 10.21608/svuijas.2024.262833.1333.MohammedA.ArkwazeeH.2024Micrografting of Pistacia vera L.: A reviewSVU-International Journal of Agricultural Sciences61617210.21608/svuijas.2024.262833.1333Open DOISearch in Google Scholar
Murashige, T., Skoog, F.A. 1962. Revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.MurashigeT.SkoogF.A.1962Revised medium for rapid growth and bio-assays with tobacco tissue culturesPhysiologia Plantarum15473497Search in Google Scholar
Nazari, J., Payamnoor, V., Alizadeh, M. 2013. Optimization of surface sterilization treatments in two birch (Betula sp.) species. Journal of Plant Production Research, 20 (3), 159–168.NazariJ.PayamnoorV.AlizadehM.2013Optimization of surface sterilization treatments in two birch (Betula sp.) speciesJournal of Plant Production Research203159168Search in Google Scholar
Neema, M., Aparna, V., Chandran, K.P. 2022. Contrast analysis recommends flame sterilization for surface depuration in coconut (Cocos nucifera) meristem culture. Current Horticulture, 10 (1), 41–44. DOI: 10.5958/2455-7560.2022.00008.5.NeemaM.AparnaV.ChandranK.P.2022Contrast analysis recommends flame sterilization for surface depuration in coconut (Cocos nucifera) meristem cultureCurrent Horticulture101414410.5958/2455-7560.2022.00008.5Open DOISearch in Google Scholar
Nguyen, Q., Xiao, Y., Kozai, T. 2020. Photoautotrophic micropropagation. In: Plant factory (eds. T. Kozai, G. Niu, M. Takagaki). Academic Press, 333–346. DOI: 10.1016/B978-0-12-816691-8.00023-6.NguyenQ.XiaoY.KozaiT.2020Photoautotrophic micropropagationIn:Plant factoryeds.KozaiT.NiuG.TakagakiM.Academic Press33334610.1016/B978-0-12-816691-8.00023-6Open DOISearch in Google Scholar
Oksanen, E. 2021. Birch as a model species for the acclimation and adaptation of northern forest ecosystem to changing environment. Frontiers in Forests and Global Change, 4, 682512. DOI: 10.3389/ffgc.2021.682512.OksanenE.2021Birch as a model species for the acclimation and adaptation of northern forest ecosystem to changing environmentFrontiers in Forests and Global Change468251210.3389/ffgc.2021.682512Open DOISearch in Google Scholar
Paek, K., Chakrabarty, D., Hahn, E. 2005. Application of bioreactor systems for large scale production of horticultural and medicinal plants. In: Liquid culture systems for in vitro plant propagation (eds. A.K. Hvoslef-Eide, W. Preil). Springer, Dordrecht, 95–116. DOI: 10.1007/1-4020-3200-5_6.PaekK.ChakrabartyD.HahnE.2005Application of bioreactor systems for large scale production of horticultural and medicinal plantsIn:Liquid culture systems for in vitro plant propagationeds.Hvoslef-EideA.K.PreilW.SpringerDordrecht9511610.1007/1-4020-3200-5_6Open DOISearch in Google Scholar
Payamnoor, V., Alizadeh, M., Ghasemi Bezdi, K., Nazari J. 2017. Micropropagation of birch (B. litwinowii) from leaf callus. Forest and Wood Products, 70 (2).PayamnoorV.AlizadehM.Ghasemi BezdiK.NazariJ.2017Micropropagation of birch (B. litwinowii) from leaf callusForest and Wood Products702Search in Google Scholar
Perez, C., Postigo, P. 1989. Micropropagation of Betula celtiberica. Annals of Botany, 64, 67–69.PerezC.PostigoP.1989Micropropagation of Betula celtibericaAnnals of Botany646769Search in Google Scholar
Phillips, G., Garda, M. 2019. Plant tissue culture media and practices: an overview. In Vitro Cellular and Developmental Biology – Plant, 55, 242–257. DOI: 10.1007/s11627-019-09983-5.PhillipsG.GardaM.2019Plant tissue culture media and practices: an overviewIn Vitro Cellular and Developmental Biology – Plant5524225710.1007/s11627-019-09983-5Open DOISearch in Google Scholar
Purohit, S., Teixeira da Silva, J., Habibi, N. 2011. Current approaches for cheaper and better micropropagation technologies. International Journal of Plant Developmental Biology, 5 (1), 1–36.PurohitS.Teixeira da SilvaJ.HabibiN.2011Current approaches for cheaper and better micropropagation technologiesInternational Journal of Plant Developmental Biology51136Search in Google Scholar
Rathwell, R. 2015. In vitro propagation and preservation of cherry birch (Betula lenta L.) Doctoral dissertation, University of Guelph. Available at http://hdl.handle.net/10214/9121.RathwellR.2015In vitro propagation and preservation of cherry birch (Betula lenta L.)Doctoral dissertation, University of Guelph. Available at http://hdl.handle.net/10214/9121Search in Google Scholar
Rathwell, R., Shukla, M.R., Jones, A., Maxwell, P., Saxena, P.K. 2016. In vitro propagation of cherry birch (Betula lenta L.). Canadian Journal of Plant Science, 96 (4), 571–578. DOI: 10.1139/CJPS-2015-0331.RathwellR.ShuklaM.R.JonesA.MaxwellP.SaxenaP.K.2016In vitro propagation of cherry birch (Betula lenta L.)Canadian Journal of Plant Science96457157810.1139/CJPS-2015-0331Open DOISearch in Google Scholar
Rojo, J. et al. 2021. Effects of future climate change on birch abundance and their pollen load. Global Change Biology, 27 (22), 5934–5949. DOI: 10.1111/gcb.15824.RojoJ.2021Effects of future climate change on birch abundance and their pollen loadGlobal Change Biology27225934594910.1111/gcb.15824Open DOISearch in Google Scholar
Simola, L. 1985. Propagation of plantlets from leaf callus of Betula pendula F. Purpurea. Scientia Horticulturae, 26 (1), 77–85. DOI: 10.1016/0304-4238(85)90104-9.SimolaL.1985Propagation of plantlets from leaf callus of Betula pendula F. PurpureaScientia Horticulturae261778510.1016/0304-4238(85)90104-9Open DOISearch in Google Scholar
Singh, A. 2015. Micropropagation of plants. In: Plant biology and biotechnology. Volume 2: Plant genomics and biotechnology (eds. B. Bahadur, M.V. Rajam, L. Sahijram, K.V. Krishnamurthy). Springer, New Delhi, India, 329–346.SinghA.2015Micropropagation of plantsIn:Plant biology and biotechnology. Volume 2: Plant genomics and biotechnologyeds.BahadurB.RajamM.V.SahijramL.KrishnamurthyK.V.SpringerNew Delhi, India329346Search in Google Scholar
Srivastava, P.S., Steinhauer, A., Glock, H. 1985. Plantlet regeneration in leaf and root cultures of birch (Betula pendula Roth.). Plant Science, 42 (3), 209–214. DOI: 10.1016/0168-9452(85)90129-3.SrivastavaP.S.SteinhauerA.GlockH.1985Plantlet regeneration in leaf and root cultures of birch (Betula pendula Roth.)Plant Science42320921410.1016/0168-9452(85)90129-3Open DOISearch in Google Scholar
Teixeira da Silva, J., Winarto, B., Dobránszki, J., Cardoso, J., Zeng, S. 2016. Tissue disinfection for preparation of Dendrobiumin vitro culture. Folia Horticulturae, 28 (1), 57–75. DOI: 10.1515/fhort-2016-0008.Teixeira da SilvaJ.WinartoB.DobránszkiJ.CardosoJ.ZengS.2016Tissue disinfection for preparation of Dendrobiumin vitro cultureFolia Horticulturae281577510.1515/fhort-2016-0008Open DOISearch in Google Scholar
Tesliuk, N., Lytvyn, M., Hudzenko, T. 2022. Optimization of the nutrient medium for the primary stages of Juglans regia microclonal propagation in vitro (in Ukrainian). Microbiology and Biotechnology, 3, 24–33. DOI: 10.18524/2307-4663.2022.3(56).265806.TesliukN.LytvynM.HudzenkoT.2022Optimization of the nutrient medium for the primary stages of Juglans regia microclonal propagation in vitro (in Ukrainian)Microbiology and Biotechnology3243310.18524/2307-4663.2022.3(56).265806Open DOISearch in Google Scholar
Tommasi, F., Scaramuzzi, F. 2004. In vitro propagation of Ginkgo biloba by using various bud cultures. Biologia Plantarum, 48, 297–300. DOI: 10.1023/B:BIOP.0000033460.75432.d1.TommasiF.ScaramuzziF.2004In vitro propagation of Ginkgo biloba by using various bud culturesBiologia Plantarum4829730010.1023/B:BIOP.0000033460.75432.d1Open DOISearch in Google Scholar
Trasar-Cepeda, C. et al. 2023. Effect of soil type and in vitro proliferation conditions on acclimation and growth of willow shoots micropropagated in continuous immersion bioreactors. Plants, 12 (1), 132. DOI: 10.3390/plants12010132.Trasar-CepedaC.2023Effect of soil type and in vitro proliferation conditions on acclimation and growth of willow shoots micropropagated in continuous immersion bioreactorsPlants12113210.3390/plants12010132Open DOISearch in Google Scholar
Vaičiukynė, М., Žiauka, J., Kuusienė, S. 2017. Factors that determine shoot viability and root development during in vitro adaptation and propagation of silver birch (Betula pendula Roth). Biologija, 63 (3), 246–255. DOI: 10.6001/biologija.v63i3.3579.VaičiukynėМ.ŽiaukaJ.KuusienėS.2017Factors that determine shoot viability and root development during in vitro adaptation and propagation of silver birch (Betula pendula Roth)Biologija63324625510.6001/biologija.v63i3.3579Open DOISearch in Google Scholar
Vítámvás, J., Kuneš, I., Viehmannová, I., Linda, R., Baláš, M. 2020. Conservation of Betula oycoviensis, an endangered rare taxon, using vegetative propagation methods. iForest, 13, 107–113. DOI: 10.3832/ifor3243-013.VítámvásJ.KunešI.ViehmannováI.LindaR.BalášM.2020Conservation of Betula oycoviensis, an endangered rare taxon, using vegetative propagation methodsiForest1310711310.3832/ifor3243-013Open DOISearch in Google Scholar
Welander, M. 1993. Micropropagation of birch. In: Micropropagation of woody plants. Forestry Sciences, vol 41 (ed. M.R. Ahuja). Springer, Dordrecht, 223–246. DOI: 10.1007/978-94-015-8116-5_14.WelanderM.1993Micropropagation of birchIn:Micropropagation of woody plants. Forestry Sciences, vol 41ed.AhujaM.R.SpringerDordrecht22324610.1007/978-94-015-8116-5_14Open DOISearch in Google Scholar
Wright, J. 2017. What is a Royal Frost Birch Tree? Available at https://www.gardenguides.com/114196-royal-frost-birch-tree.html.WrightJ.2017What is a Royal Frost Birch Tree?Available at https://www.gardenguides.com/114196-royal-frost-birch-tree.htmlSearch in Google Scholar
Xuening, F., Hongzhi, G., Yaorong, S., Yongkang, W., Zaimin, J., Jing, C. 2021. Establishment of tissue culture system of Betula alba. Journal of Forestry Science, 34 (3), 194–200. DOI: 10.13275/j.cnki.lykxyj.2021.03.023.XueningF.HongzhiG.YaorongS.YongkangW.ZaiminJ.JingC.2021Establishment of tissue culture system of Betula albaJournal of Forestry Science34319420010.13275/j.cnki.lykxyj.2021.03.023Open DOISearch in Google Scholar
Yavorska, N., Lobachevska, O., Khorkavtsіv, Ya., Kyyak, N. 2016. Microclonal propagation of the varieties of highbush blueberry Vaccinium corymbosum L. Biotechnologia Acta, 9 (5), 30–37. DOI: 10.15407/biotech9.05.030.YavorskaN.LobachevskaO.KhorkavtsіvYa.KyyakN.2016Microclonal propagation of the varieties of highbush blueberry Vaccinium corymbosum LBiotechnologia Acta95303710.15407/biotech9.05.030Open DOISearch in Google Scholar
Zaki, M., Sofi, M.S., Kaloo, Z.A. 2011. A reproducible protocol for raising clonal plants from leaf segments excised from mature trees of Betula utilis a threatened tree species of Kashmir Himalayas. International Multidisciplinary Research Journal, 1 (5), 7–13.ZakiM.SofiM.S.KalooZ.A.2011A reproducible protocol for raising clonal plants from leaf segments excised from mature trees of Betula utilis a threatened tree species of Kashmir HimalayasInternational Multidisciplinary Research Journal15713Search in Google Scholar
Zeps, M. et al. 2022. Plantlet anatomy of silver birch (Betula pendula Roth.) and hybrid aspen (Populus tremuloides Michx. × Populus tremula L.) shows intraspecific reactions to illumination in vitro. Plants, 11 (8), 1097. DOI: 10.3390/plants11081097.ZepsM.2022Plantlet anatomy of silver birch (Betula pendula Roth.) and hybrid aspen (Populus tremuloides Michx. × Populus tremula L.) shows intraspecific reactions to illumination in vitroPlants118109710.3390/plants11081097Open DOISearch in Google Scholar
Zhang, Z., Sun, Y., Li, Y. 2020. Plant rejuvenation: from phenotypes to mechanisms. Plant Cell Reports, 39, 1249–1262. DOI: 10.1007/s00299-020-02577-1.ZhangZ.SunY.LiY.2020Plant rejuvenation: from phenotypes to mechanismsPlant Cell Reports391249126210.1007/s00299-020-02577-1Open DOISearch in Google Scholar
Ziv, M. 1994. The control of bioreactor environment for plant propagation in liquid culture. Acta Horticulturae, 393, 25–38. DOI: 10.17660/ActaHortic.1995.393.3.ZivM.1994The control of bioreactor environment for plant propagation in liquid cultureActa Horticulturae393253810.17660/ActaHortic.1995.393.3Open DOISearch in Google Scholar