Accesso libero

The polypharmacy reduction potential of cinnamic acids and some related compounds in pre- and post-onset management of type 2 diabetes mellitus

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Abdelmageed ME, Shehatou GS, Abdelsalam RA, Suddek GM, Salem HA. Cinnamaldehyde ameliorates STZ-induced rat diabetes through modulation of IRS1/PI3K/AKT2 pathway and AGEs/RAGE interaction. N-S Arch Pharmacol Arch 392, 243–258, 2019.10.1007/s00210-018-1583-430460386Search in Google Scholar

Adisakwattana S, Sookkongwaree K, Roengsumran S, Petsom A, Ngamrojnavanich N, Chavasiri W, Deesamer S, Yibchok-anun S. Structure-activity relationships of trans-cinnamic acid derivatives on α-glucosidase inhibition. Bioorg Med Chem Lett 14, 2893–2896, 2004.10.1016/j.bmcl.2004.03.03715125954Search in Google Scholar

Adisakwattana S, Roengsamran S, Hsu WH, Yibchok-anuna S. Mechanisms of antihyperglycemic effect of p-methoxycinnamic acid in normal and streptozotocin-induced diabetic rats. Life Sciences 78, 406–412, 2005.10.1016/j.lfs.2005.04.07316139846Search in Google Scholar

Adisakwattana S, Moonsan P, Yibchok-anun S. Insulin-releasing properties of a series of cinnamic acid derivatives in vitro and in vivo. J Agric Food Chem 56, 7838–7844, 2008.10.1021/jf801208t18651742Search in Google Scholar

Adisakwattana S, Chantarasinlapin P, Thammarat H, Yibchok-Anun S. A series of cinnamic acid derivatives and their inhibitory activity on intestinal α-glucosidase. J Enzyme Inhib Med Chem 24, 1194–1200, 2009.10.1080/1475636090277932619772492Search in Google Scholar

Adisakwattana S. Cinnamic acid and its derivatives, mechanisms for prevention and management of diabetes and its complications. Nutrients 9, pii E163, 2017.10.3390/nu9020163533159428230764Search in Google Scholar

Agunloye OM, Oboh G. Hypercholesterolemia, angiotensin converting enzyme and ecto-enzymes of purinergic system: Ameliorative properties of caffeic and chlorogenic acid in hypercholesterolemic rats. J Food Biochem 2018, e12604, 2018.10.1111/jfbc.12604Search in Google Scholar

Amin RP, Kunaparaju N, Kumar S, Taldone T, Barletta MA, Zito SW. Structure elucidation and inhibitory effects on human platelet aggregation of chlorogenic acid from Wrightia tinctoria. J Complement Integr Med 10, 97–104, 2013.10.1515/jcim-2012-004823735478Search in Google Scholar

Arlt W, Neogi P, Gross C, Miller WL. Cinnamic acid based thiazolidinediones inhibit human P450c17 and 3β-hydroxysteroid dehydrogenase and improve insulin sensitivity independent of PPARγ agonist activity. J Mol Endocrinol 32, 425–436, 2004.10.1677/jme.0.032042515072549Search in Google Scholar

Austin RP. Polypharmacy as a risk factor in the treatment of type 2 diabetes. Diabetes Spectr 18, 13–16, 2006.10.2337/diaspect.19.1.13Search in Google Scholar

Avogaro A, Fadini GP, Gallo A, Pagnin E, de Kreutzenberg S. Endothelial dysfunction in type two diabetes mellitus. Nutr, Metabol Cardiovasc Dis 16(Suppl), S39–S45, 2006.10.1016/j.numecd.2005.10.01516530129Search in Google Scholar

Azuma K, Heilbronn LK, Albu JB, Smith SR, Ravussin E, Kelley DE. Adipose tissue distribution in relation to insulin resistance in type two diabetes. Am J Physiol Endocrinol Metab 293, E435–E442, 2007.10.1152/ajpendo.00394.2006568469717440034Search in Google Scholar

Babu PS, Prabuseenivasan S, Ignacimuthu S. Cinnamaldehyde-a potential antidiabetic agent. Phytomedicine 14, 15–22, 2007.10.1016/j.phymed.2006.11.00517140783Search in Google Scholar

Barre DE, Mizier-Barre KA, Stelmach E, Hobson J, Griscti O, Rudiuk A, Muthuthevar D. Flaxseed lignan complex administration in older human type 2 diabetes patients manages central obesity and prothrombosis-an invitation to further investigation into polypharmacy reduction. J Nutr Metab 2012, 585170, 2012.10.1155/2012/585170347146023094144Search in Google Scholar

Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology and management. JAMA 287, 2570–2581, 2002.10.1001/jama.287.19.257012020339Search in Google Scholar

Bel-Rhlid R, Thapa D, Kraehenbuehl K, Hansen CE, Fischer L. Biotransformation of caffeoyl quinic acids from green coffee extracts by Lactobacillus johnsonii NCC 533. AMB Express 3, 28, 2013.10.1186/2191-0855-3-28367978123692950Search in Google Scholar

Bhandarkar NS, Brown L, Panchal SK. Chlorogenic acid attenuates high-carbohydrate, high-fat diet-induced cardiovascular, liver, and metabolic changes in rats. Nutr Res 62, 78–88, 2019.10.1016/j.nutres.2018.11.00230803509Search in Google Scholar

Boudjeltia KZ, Legssyer I, Antwerpen PV, Kisoka RL, Babar S, Moguilevsky N, Delree P, Ducobu J, Remacle C, Vanhaeverbeek M, Brohee D. Triggering of inflammatory response by myeloperoxidase-oxidized LDL. Biochem Cell Biol 84, 805–812, 2006.10.1139/o06-06117167545Search in Google Scholar

Brown NJ, Vaughan DE. Angiotensin-converting enzyme inhibitors. Circulation 97, 1411–1420, Review, 1998.10.1161/01.CIR.97.14.1411Search in Google Scholar

Carr MC, Brunzell JD. Abdominal obesity and dyslipidemia in the metabolic syndrome: importance of type two diabetes and familial combined hyperlipidemia in coronary artery disease risk. J Clin Endocrinol Metab 89, 2601–2607, 2004.10.1210/jc.2004-043215181030Search in Google Scholar

Caspary WF. Sucrose malabsorption in man after ingestion of α-glucosidehydrolase inhibitor. Lancet 1, 1231–1233, 1978.10.1016/S0140-6736(78)92466-2Search in Google Scholar

Caspary WF, Graf S. Inhibition of human intestinal α-glucosidehydrolases by a new complex oligosaccharide. Res Exp Med (Berlin) 175, 1–6, 1979.10.1007/BF01851228441522Search in Google Scholar

Cavelti-Weder C, Timper K, Seelig E, Keller C, Osranek M, Lassing U, Spohn G, Maurer P, Muller P, Jennings GT, Willers J, Saudan P, Donath MY, Bachmann MF. Development of an interleukin-1β vaccine in patients with type 2 diabetes. Mol Ther 24, 1003–1012, 2016.10.1038/mt.2015.227488176426686385Search in Google Scholar

Chen K, Pittman RN, Popel AS. Nitric oxide in the vasculature: where does it come from and where does it go? A quantitative perspective. Antiox Redox Signal 10, 1185–1198, 2008.10.1089/ars.2007.1959293254818331202Search in Google Scholar

Cho AS, Jeon SM, Kim MJ, Yeo J, Seo KI, Choi MS, Lee MK. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem Toxicol 48, 937–943, 2010.10.1016/j.fct.2010.01.00320064576Search in Google Scholar

Cicero AF, Colletti A. Role of phytochemicals in the management of metabolic syndrome. Phytomed 23, 1134–1144, 2016.10.1016/j.phymed.2015.11.00926778479Search in Google Scholar

Crujeiras AB, Diaz-Lagares A, Abete I, Goyenechea E, Amil M, Martinez JA, Casanueva FF. Pre-treatment circulating leptin/ghrelin ratio as a non-invasive marker to identify patients likely to regain the lost weight after an energy restriction treatment. J Endocrinol Invest 37, 119–126, 2014.10.1007/s40618-013-0004-224497210Search in Google Scholar

Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R. Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation 111, 1448–1454, 2005.10.1161/01.CIR.0000158483.13093.9D15781756Search in Google Scholar

de Melo TS, Lima PR, Carvalho KM, Fontenele TM, Solon FR, Tome AR, de Lemos TL, da Cruz Fonseca SG, Santos FA, Rao VS, de Queiroz MG. Ferulic acid lowers body weight and visceral fat accumulation via modulation of enzymatic, hormonal and inflammatory changes in a mouse model of high-fat diet-induced obesity. Braz J Med Biol Res 50, e56302, 2017.10.1590/1414-431x20165630526454028076453Search in Google Scholar

Del Rio D, Stalmach A, Calani L, Crozier A. Bioavailability of coffee chlorogenic acids and green tea flavan-3-ols. Nutrients 2, 820–833, 2010.10.3390/nu2080820325770422254058Search in Google Scholar

Devaraj S, Tang R, Adams-Huet B, Harris A, Seenivasan T, de Lemos JA, Jialal I. Effect of high-dose alpha-tocopherol supplementation on biomarkers of oxidative stress and inflammation and carotid atherosclerosis in patients with coronary artery disease. Am J Clin Nutr 86, 1392–1398, 2007.10.1093/ajcn/86.5.1392Search in Google Scholar

Devi VR, Sharmila C, Subramanian S. Molecular docking studies involving the inhibitory effect of gymnemic acid, trigonelline and ferulic acid, the phytochemicals with antidiabetic properties, on glycogen synthase kinase 3 (α and β). J Appl Pharm Sci 8, 150–160, 2018.10.7324/JAPS.2018.8422Search in Google Scholar

Dunn JD. Diabetes pharmacy management, balancing safety, cost, and outcomes. Amer J Manag Care 16 (7 Suppl), S201–206, 2010.Search in Google Scholar

El-Bassossy HM, Fahmy A, Badawy D. Cinnamaldehyde protects from the hypertension associated with diabetes. Food Chem Toxicol 49, 3007–3012, 2011.10.1016/j.fct.2011.07.060Search in Google Scholar

Erkelens DW. Insulin resistance syndrome and type 2 diabetes mellitus. Am J Cardiol 88(suppl) 38J–42J, 2001.10.1016/S0002-9149(01)01883-5Search in Google Scholar

Foti M, Piatelli M, Tiziana Baratta M, Ruberto G. Flavonoids, coumarins, and cinnamic acids as antioxidants in a micellar system. structure−activity relationship. J Agric Food Chem 44, 497–501, 1996.10.1021/jf950378uSearch in Google Scholar

Funke I, Melzig MF. Traditionally used plants in diabetes therapy - phytotherapeutics as inhibitors of α-amylase activity. Brazi J Pharmacog 16, 1–5, 2006.10.1590/S0102-695X2006000100002Search in Google Scholar

Gonthier MP, Remesy C, Scalbert A, Cheynier V, Souquet JM, Poutanen K, Aura AM. Microbial metabolism of caffeic acid and its esters chlorogenic and caftaric acids by human faecal microbiota in vitro. Biomed Pharmacother 60, 536–540, 2006.10.1016/j.biopha.2006.07.084Search in Google Scholar

Gresele P, Guglielmini G, De Angelis M, Ciferri S, Ciofetta M, Falcinelli E, Lalli C, Ciabattoni G, Davì G, Bolli GB. Acute, short-term hyperglycemia enhances shear stress-induced platelet activation in patients with type II diabetes mellitus. J Am Coll Cardiol 41, 1013–1020, 2003.10.1016/S0735-1097(02)02972-8Search in Google Scholar

Grundy SM. Metabolic syndrome, connecting and reconciling cardiovascular and diabetes worlds. J Amer Coll Cardiol 47, 1093–1100, 2006a.10.1016/j.jacc.2005.11.04616545636Search in Google Scholar

Grundy SM. Drug therapy of the metabolic syndrome: minimizing the emerging crisis in polypharmacy. Nat Rev Drug Discov 5, 295–309, 2006b.10.1038/nrd200516582875Search in Google Scholar

Hafizur RM, Hameed A, Shukrana M, Raza SA, Chishti S, Kabir N, Siddiqui RA. Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro. Phytomed 22, 297–300, 2015.10.1016/j.phymed.2015.01.00325765836Search in Google Scholar

Huang J, Wang S, Luo X, Xie Y, Shi X. Cinnamaldehyde reduction of platelet aggregation and thrombosis in rodents. Thromb Res 119, 337–342, 2007.10.1016/j.thromres.2006.03.00116626787Search in Google Scholar

Huang DW, Shen SC, Wu JSB. Effects of caffeic acid and cinnamic acid on glucose uptake in insulin-resistant mouse hepatocytes. J Agric Food Chem 57, 3666–3673, 2009.10.1021/jf901376x19685889Search in Google Scholar

Huang ES, Karter AJ, Danielson KK, Warton EM, Ahmed AT. The association between the number of prescription medications and incident falls in a multi-ethnic population of adult type-2 diabetes patients, the diabetes and aging study. J Gen Intern Med 25, 141–146, 2010.10.1007/s11606-009-1179-2283750119967465Search in Google Scholar

Huang B, Yuan HD, Kim DY, Quan HY, Chung SH. Cinnamaldehyde prevents adipocyte differentiation and adipo-genesis via regulation of peroxisome proliferator-activated receptor-γ (PPARγ) and AMP-activated protein kinase (AMPK) pathways. J Agric Food Chem 59, 3666–3673, 2011.10.1021/jf104814t21401097Search in Google Scholar

Hubbard GP, Wolffram S, Lovegrove JA, Gibbins JM. The role of polyphenolic compounds in the diet as inhibitors of platelet function. Proc Nutr Soc 62, 469–478, 2003.10.1079/PNS2003253Search in Google Scholar

Jung UJ, Lee MK, Park YB, Jeon SM, Choi MS. Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J Pharmacol Exp Ther 318, 476–483, 2006.10.1124/jpet.106.10516316644902Search in Google Scholar

Jung EH, Kim SR, Hwang IK, Ha TY. Hypoglycemic effects of a phenolic acid fraction of rice bran and ferulic acid in C57BL/KsJ-db/db mice. J Agric Food Chem 55, 9800–9804, 2007.10.1021/jf071446317973443Search in Google Scholar

Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocrin Rev 26, 439–451, 2005.10.1210/er.2005-000515897298Search in Google Scholar

Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1, 15–25, 2005.10.1016/j.cmet.2004.12.00316054041Search in Google Scholar

Khare P, Jagtap S, Jain Y, Baboota RK, Mangal P, Boparai RK, Bhutani KK, Sharma SS, Premkumar LS, Kondepudi KK, Chopra K, Bishnoi M. Cinnamaldehyde supplementation prevents fasting-induced hyperphagia, lipid accumulation, and inflammation in high-fat diet-fed mice. Biofactors 42, 201–211, 2016.10.1002/biof.1265Search in Google Scholar

Kopp C, Singh SP, Regenhard P, Muller U, Sauerwein H, Mielenz M. Trans-cinnamic acid increases adiponectin and the phosphorylation of AMP-activated protein kinase through G-protein-coupled receptor signaling in 3T3-L1 adipocytes. Int J Mol Sci 15, 2906–2915, 2014.10.3390/ijms15022906Search in Google Scholar

Kostrzewa T, Przychodzen P, Gorska-Ponikowska M, Kuban-Jankowska A. Curcumin and cinnamaldehyde as PTP1B inhibitors with antidiabetic and anticancer potential. Anticancer Res 39, 745–749, 2019.10.21873/anticanres.13171Search in Google Scholar

Krauss RM. Lipids and lipoproteins in patients with type 2 diabetes. Diabetes Care 27, 1496–1504, 2004.10.2337/diacare.27.6.1496Search in Google Scholar

Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, Winder WW. 5’ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 48, 1667–1671, 1999.10.2337/diabetes.48.8.1667Search in Google Scholar

Lakshmi BS, Sujatha S, Anand S, Sangeetha KN, Narayanan RB, Katiyar C, Kanaujia A, Duggar R, Singh Y, Srinivas K, Bansal V, Sarin S, Tandon R, Sharma S, Singh S. Cinnamic acid, from the bark of Cinnamomum cassia, regulates glucose transport via activation of GLUT4 on L6 myotubes in a phosphatidylinositol 3-kinase-independent manner. J Diabetes 1, 99–106, 2009.10.1111/j.1753-0407.2009.00022.xSearch in Google Scholar

Lee JS, Jeon SM, Park EM, Huh TL, Kwon OS, Lee MK, Choi MS. Cinnamate supplementation enhances hepatic lipid metabolism and antioxidant defense systems in high cholesterol-fed rats. J Med Food 6,183–191, 2003.10.1089/10966200360716599Search in Google Scholar

Lee S, Han JM, Kim H, Kim E, Jeong TS, Lee WS, Cho KH. Synthesis of cinnamic acid derivatives and their inhibitory effects on LDL-oxidation, acyl-CoA, cholesterol acyltransferase-1 and -2 activity and decrease of HDL-particle size. Bioorg Med Chem Lett 14, 4677–4681, 2004.10.1016/j.bmcl.2004.06.101Search in Google Scholar

Li J, Liu T, Wang L, Guo X, Xu T, Wu L, Qin L, Sun W Antihyperglycemic and antihyperlipidemic action of cinnamaldehyde in C57BLKS/J db/db mice. J Trad Chin Med 32, 446–452, 2012.10.1016/S0254-6272(13)60053-9Search in Google Scholar

Lu Y, Li Q, Liu YY, Sun K, Fan JY, Wang CS, Han JY. Inhibitory effect of caffeic acid on ADP-induced thrombus formation and platelet activation involves mitogen-activated protein kinases. Sci Rep 5, 13824, 2015.10.1038/srep13824456190226345207Search in Google Scholar

Madsen P, Westergaard N. Glucose-6-phosphatase inhibitors for the treatment of type 2 diabetes. Expert Opin Ther Pat 11, 1429–1441, 2001.10.1517/13543776.11.9.1429Search in Google Scholar

Meng S, Cao J, Feng Q, Peng J, Hu Y. Roles of chlorogenic acid on regulating glucose and lipids metabolism: a review. Evid Based Complement Alternat Med 2013, 801457, 2013.10.1155/2013/801457Search in Google Scholar

Mnafgui K, Derbali A, Sayadi S, Gharsallah N, Elfeki A, Allouche N. Anti-obesity and cardioprotective effects of cinnamic acid in high fat diet-induced obese rats. J Food Sci Tech 52, 4369–4377, 2015.10.1007/s13197-014-1488-2Search in Google Scholar

Neogi P, Lakner FJ, Medicherla S, Cheng J, Dey D, Gowri M, Nag B, Sharma SD, Pickford LB, Gross C. Synthesis and structure-activity relationship studies of cinnamic acid-based novel thiazolidinedione antihyperglycemic agents. Bioorg Med Chem 11, 4059–4067, 2003.10.1016/S0968-0896(03)00393-6Search in Google Scholar

Nyambe-Silavwe H, Williamson G. Chlorogenic and phenolic acids are only very weak inhibitors of human salivary α-amylase and rat intestinal maltase activities. Food Res Int 113, 452–455, 2018.Oboh G, Agunloye OM, Adefegha SA, Akinyemi AJ, Ademiluyi AO. Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): a comparative study. J Basic Clin Physiol Pharmacol 26, 165–170, 2015.10.1016/j.foodres.2018.07.038614343830195541Search in Google Scholar

Olthof MR, Hollman PC, Katan MB. Chlorogenic acid and caffeic acid are absorbed in humans. J Nutr 131, 66–71, 2001.10.1093/jn/131.1.6611208940Search in Google Scholar

Ong KW, Hsu A, Tan BK. Chlorogenic acid stimulates glucose transport in skeletal muscle via AMPK activation: a contributor to the beneficial effects of coffee on diabetes. PLoS One 7, e32718, 2012.10.1371/journal.pone.0032718329673322412912Search in Google Scholar

Ong KW, Hsu A, Tan BK. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochem Pharmacol 85, 1341–1351, 2013.10.1016/j.bcp.2013.02.00823416115Search in Google Scholar

Pan A, Sun J, Chen Y, Ye X, Li H, Yu Z, Wang Y, Gu W, Zhang X, Chen X, Demark-Wahnefried W, Liu Y, Lin X. Effects of a flaxseed-derived lignan supplement in type 2 diabetic patients, a randomized, double-blind, cross-over trial. PLoS One 2, e1148, 2007.10.1371/journal.pone.0001148204857717987126Search in Google Scholar

Pari L, Karthikesan K, Menon VP. Comparative and combined effect of chlorogenic acid and tetrahydrocurcumin on antioxidant disparities in chemical induced experimental diabetes. Mol Cell Biochem 341, 109–117, 2010.10.1007/s11010-010-0442-520339905Search in Google Scholar

Park I, Ochiai R, Ogata H, Kayaba M, Hari S, Hibi M, Katsuragi Y, Satoh M, Tokuyama K. Effects of subacute ingestion of chlorogenic acids on sleep architecture and energy metabolism through activity of the autonomic nervous system: a randomised, placebo-controlled, double-blinded cross-over trial. Br J Nutr 117, 979–984, 2017.10.1017/S0007114517000587Search in Google Scholar

Plumb GW, Garcia-Conesa MT, Kroon PA, Rhodes M, Ridley S and Williamson G. Metabolism of chlorgenic acid by human plasma liver, intestine and gut microflora. J Sci Food Agric 79, 390–392, 1999.10.1002/(SICI)1097-0010(19990301)79:3<390::AID-JSFA258>3.0.CO;2-0Search in Google Scholar

Roy S, Metya SK, Sannigrahi S, Rahaman N, Ahmed F. Treatment with ferulic acid to rats with streptozotocin-induced diabetes: effects on oxidative stress, pro-inflammatory cytokines, and apoptosis in the pancreatic β cell. Endocrine 44, 369–379, 2013.10.1007/s12020-012-9868-8Search in Google Scholar

Schmidt AM, Yan SD, Yan SF, Stern DM. The biology of the receptor for advanced glycation end products and its ligands. Biochim Biophys Acta 1498, 99–111, 2000.10.1016/S0167-4889(00)00087-2Search in Google Scholar

Steinberg D. Antioxidants in the prevention of human atherosclerosis. Summary of the proceedings of a National Heart, Lung, and Blood Institute Workshop: September 5-6, 1991, Bethesda, Maryland. Circulation 85, 2337–2344, 1992.10.1161/01.CIR.85.6.2337Search in Google Scholar

Toma L, Sanda GM, Niculescu LS, Deleanu M, Stancu CS, Sima AV. Caffeic acid attenuates the inflammatory stress induced by glycated LDL in human endothelial cells by mechanisms involving inhibition of AGE-receptor, oxidative, and endoplasmic reticulum stress. Biofactors 43, 685–697, 2017.10.1002/biof.1373Search in Google Scholar

Tomas-Barberan F, Garcia-Villalba R, Quartieri A, Raimondi S, Amaretti A, Leonardi A, Rossi M. In vitro transformation of chlorogenic acid by human gut microbiota. Mol Nutr Food Res 58, 1122–1131, 2014.10.1002/mnfr.201300441Search in Google Scholar

van Bruggen R, Gorter K, Stolk RP, Zuithoff P, Klungel OH, Rutten GE. Refill adherence and polypharmacy among patients with type 2 diabetes in general practice. Pharmacoepidemiol Drug Safe 18, 983–991, 2009.10.1002/pds.1810Search in Google Scholar

van Dijk AE, Olthof MR, Meeuse JC, Seebus E, Heine RJ, van Dam RM. Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care 32,1023–1025, 2009.10.2337/dc09-0207Search in Google Scholar

Wang H, Li Q, Deng W, Omari-Siaw E, Wang Q, Wang S, Wang S, Cao X, Xu X, Yu J. Self-nanoemulsifying drug delivery system of trans-cinnamic acid, formulation development and pharmacodynamic evaluation in alloxan-induced type 2 diabetic rat model. Drug Develop Res 76, 82–93, 2015.10.1002/ddr.21244Search in Google Scholar

Wang W, Pan Y, Zhou H, Wang L, Chen X, Song G, Liu J, Li A. Ferulic acid suppresses obesity and obesity-related metabolic syndromes in high fat diet-induced obese C57BL/6J mice. Food Agri Immunol 29, 1116–1125, 2018.10.1080/09540105.2018.1516739Search in Google Scholar

Witztum JL, Steinberg D. Role of oxidized low-density lipoprotein in atherogenesis. J Clin Invest 88, 1785–1792, 1991.10.1172/JCI1154992957451752940Search in Google Scholar

Wright E Jr, Scism-Bacon JL, Glass LC. Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int J Clin Pract 60, 308–314, 2006.10.1111/j.1368-5031.2006.00825.x144869416494646Search in Google Scholar

Yoo KM, Lee C, Lo YM, Moon B. The hypoglycemic effects of American red ginseng (Panax quinquefolius L.) on a diabetic mouse model. J Food Sci 77, H147–H152, 2012.10.1111/j.1750-3841.2012.02748.x22757707Search in Google Scholar

Zhao G, Dharmadhikari G, Maedler K, Meyer-Hermann M. Possible role of interleukin-1β in type 2 diabetes onset and implications for anti-inflammatory therapy strategies. PLoS Computat Biol 10, e1003798, 2014.10.1371/journal.pcbi.1003798414819525167060Search in Google Scholar

Zhao Y, Wang J, Ballevre O, Luo H, Zhang W. Antihypertensive effects and mechanisms of chlorogenic acids. Hypertens Res 35, 370–374, 2012.10.1038/hr.2011.19522072103Search in Google Scholar

Zuniga LY, Aceves-de la Mora MCA, Gonzalez-Ortiz M, Ramos-Nunez JL, Martinez-Abundis E. Effect of chlorogenic acid administration on glycemic control, insulin secretion, and insulin sensitivity in patients with impaired glucose tolerance. J Med Food 21, 469–473, 2018.10.1089/jmf.2017.011029261010Search in Google Scholar

eISSN:
1336-0329
Lingua:
Inglese