1. bookVolume 35 (2022): Edizione 1 (July 2022)
Dettagli della rivista
Prima pubblicazione
30 May 2014
Frequenza di pubblicazione
4 volte all'anno
Accesso libero

MicroRNA expression biomarkers of chronic venous disease

Pubblicato online: 28 Jul 2022
Volume & Edizione: Volume 35 (2022) - Edizione 1 (July 2022)
Pagine: 21 - 26
Ricevuto: 27 May 2021
Accettato: 10 Mar 2022
Dettagli della rivista
Prima pubblicazione
30 May 2014
Frequenza di pubblicazione
4 volte all'anno

1. Eberhardt RT, Raffetto JD. Chronic venous insufficiency. Circulation. 2014;130(4):333-46.10.1161/CIRCULATIONAHA.113.00689825047584 Search in Google Scholar

2. Bergan JJ, Schmid-Schönbein GW, Smith PD, Nicolaides AN, Boisseau MR, Eklof B. Chronic venous disease. N Engl J Med. 2006; 355(5):488-98.10.1056/NEJMra05528916885552 Search in Google Scholar

3. Meissner MH, Moneta G, Burnand K, Gloviczki P, Lohr JM, Lurie F, et al. The hemodynamics and diagnosis of venous disease. J Vasc Surg. 2007;46(Suppl S):4S-24S.10.1016/j.jvs.2007.09.04318068561 Search in Google Scholar

4. Raffetto JD. Pathophysiology of Chronic Venous Disease and Venous Ulcers. Surg Clin North Am. 2018;98(2):337-47.10.1016/j.suc.2017.11.00229502775 Search in Google Scholar

5. Rabe E, Pannier F. Clinical, aetiological, anatomical and pathological classification (CEAP): gold standard and limits. Phlebology. 2012; 27(Suppl 1):114-8.10.1258/phleb.2012.012s1922312077 Search in Google Scholar

6. Neubauer-Geryk J, Bieniaszewski L. Przewlekla choroba zylna – patofizjologia, obraz kliniczny i leczenie. Choroby Serca i Naczyn. 2009;6(3):135-41. Search in Google Scholar

7. Lurie F, Passman M, Meisner M, Dalsing M, Masuda E, Welch H. The 2020 update of the CEAP classification system and reporting standards. J Vasc Surg Venous Lymphat Disord. 2020;8(3):342-52.10.1016/j.jvsv.2019.12.07532113854 Search in Google Scholar

8. Eklof B, Perrin M, Delis KT, Rutherford RB, Gloviczki P. Updated terminology of chronic venous disorders: the VEIN-TERM transatlantic interdisciplinary consensus document. J Vasc Surg. 2009;49(2):498-501.10.1016/j.jvs.2008.09.01419216970 Search in Google Scholar

9. Vuylsteke ME, Colman R, Thomis S, Guillaume G, Van Quickenborne D, Staelens I. an epidemiological survey of venous disease among general practitioner attendees in different geographical regions on the globe: The final results of the Vein Consult Program. Angiology. 2018;69(9):779-85.10.1177/000331971875983429482348 Search in Google Scholar

10. Rabe E, Guex JJ, Puskas A, Scuderi A, Fernandez Quesada F. VCP Coordinators. Epidemiology of chronic venous disorders in geographically diverse populations: results from the Vein Consult Program. Int Angiol. 2012;31(2):105-15. Search in Google Scholar

11. Beebe-Dimmer JL, Pfeifer JR, Engle JS, Schottenfeld D. The epidemiology of chronic venous insufficiency and varicose veins. Ann Epidemiol. 2005;15(3):175-84.10.1016/j.annepidem.2004.05.01515723761 Search in Google Scholar

12. Jawien A, Grzela T, Ochwat A. Prevalence of chronic venous insufficiency in men and women in Poland: Multicentre cross-sectional study in 40.095 patients. Phlebology. 2003;18:110-22.10.1258/026835503322381315 Search in Google Scholar

13. Ziaja D, Sznapka M, Grzela J, Kostecki J, Biolik G, Pawlicki K, et al. Regional variations of symptoms of the chronic venous disease among primary health care patients in Poland. Acta Angiologica. 2015;21(2):31-9.10.5603/AA.2015.0007 Search in Google Scholar

14. Vuylsteke ME, Thomis S, Guillaume G, Modliszewski ML, Weides N, Staelens I. Epidemiological study on chronic venous disease in Belgium and Luxembourg: prevalence, risk factors, and symptomatology. Eur J Vasc Endovasc Surg. 2015;49(4):432-9.10.1016/j.ejvs.2014.12.03125701071 Search in Google Scholar

15. Curylo M, Cienkosz K, Mikos M, Czerw A. Epidemiology and diagnostics of venous disease in Poland. J Educ Health Sport. 2017; 7(9):49-57. Search in Google Scholar

16. Nicolaides AN. Investigation of chronic venous insufficiency: A consensus statement (France, March 5-9, 1997). Circulation. 2000; 102(20):E126-63.10.1161/01.CIR.102.20.e126 Search in Google Scholar

17. Gloviczki P, Comerota AJ, Dalsing MC, Eklof BG, Gillespie DL, Gloviczki ML, et al. Society for Vascular Surgery; American Venous Forum. The care of patients with varicose veins and associated chronic venous diseases: clinical practice guidelines of the Society for Vascular Surgery and the American Venous Forum. J Vasc Surg. 2011;53(5 Suppl):2S-48S.10.1016/j.jvs.2011.01.079 Search in Google Scholar

18. Youn YJ, Lee J. Chronic venous insufficiency and varicose veins of the lower extremities. Korean J Intern Med. 2019;34(2):269-83.10.3904/kjim.2018.230640610330360023 Search in Google Scholar

19. Wittens C, Davies AH, Bækgaard N, Broholm R, Cavezzi A, Chastanet S, et al. Editor’s choice – management of Chronic Venous Disease: Clinical practice guidelines of the European Society for Vascular Surgery (ESVS). Eur J Vasc Endovasc Surg. 2015;49(6): 678-737.10.1016/j.ejvs.2015.02.00725920631 Search in Google Scholar

20. Smith RK, Golledge J. A systematic review of circulating markers in primary chronic venous insufficiency. Phlebology. 2014;29(9):570-9.10.1177/026835551349437523928282 Search in Google Scholar

21. Wojciechowska A, Braniewska A, Kozar-Kaminska K. MicroRNA in cardiovascular biology and disease. Adv Clin Exp Med. 2017; 26(5):865-74.10.17219/acem/6291529068585 Search in Google Scholar

22. Stepien E, Costa MC, Kurc S, Drozdz A, Cortez-Dias N, Enguita FJ. The circulating non-coding RNA landscape for biomarker research: lessons and prospects from cardiovascular diseases. Acta Pharmacol Sin. 2018;39(7):1085-99.10.1038/aps.2018.35628936929877319 Search in Google Scholar

23. Zhou SS, Jin JP, Wang JQ, Zhang ZG, Freedman JH, Zheng Y, et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018;39(7): 1073-84.10.1038/aps.2018.30628936329877320 Search in Google Scholar

24. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466:835-40.10.1038/nature09267299049920703300 Search in Google Scholar

25. Kim D, Sung YM, Park J, Kim S, Kim J, Park J, et al. General rules for functional microRNA targeting. Nat Genet. 2016;48:1517-26.10.1038/ng.369427776116 Search in Google Scholar

26. Oliveto S, Mancino M, Manfrini N, Biffo S. Role of microRNAs in translation regulation and cancer. World J Biol Chem. 2017;8(1): 45-56.10.4331/wjbc.v8.i1.45532971428289518 Search in Google Scholar

27. Mukherji S, Ebert MS, Zheng GX, Tsang JS, Sharp PA, van Oudenaarden A. MicroRNAs can generate thresholds in target gene expression. Nat Genet. 2011;43:854-9.10.1038/ng.905316376421857679 Search in Google Scholar

28. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16:203-22.10.1038/nrd.2016.24628209991 Search in Google Scholar

29. Bogucka-Kocka A, Zalewski DP, Ruszel KP, Stepniewski A, Galkowski D, Bogucki J, et al. Dysregulation of MicroRNA regulatory network in lower extremities arterial disease. Front Genet. 2019;10:1200.10.3389/fgene.2019.01200689235931827490 Search in Google Scholar

30. Zhou SS, Jin JP, Wang JQ, Zhang ZG, Freedman JH, Zheng Y, et al. miRNAS in cardiovascular diseases: Potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018;39: 1073-84.10.1038/aps.2018.30628936329877320 Search in Google Scholar

31. Feinberg MW, Moore KJ. MicroRNA regulation of atherosclerosis. Circ Res. 2016;118:703-20.10.1161/CIRCRESAHA.115.306300476206926892968 Search in Google Scholar

32. Schulte C, Karakas M, Zeller T. MicroRNAs in cardiovascular disease – Clinical application. Clin Chem Lab Med. 2017;55:687-704.10.1515/cclm-2016-057627914211 Search in Google Scholar

33. Zalewski DP, Ruszel KP, Stepniewski A, Galkowski D, Bogucki J, Komsta L, et al. Dysregulation of microRNA modulatory network in abdominal aortic aneurysm. J Clin Med. 2020;9(6):1974.10.3390/jcm9061974735541532599769 Search in Google Scholar

34. Zhang C. MicroRNAs in vascular biology and vascular disease. J Cardiovasc Transl Res. 2010;3(3):235-40.10.1007/s12265-010-9164-z362644120560045 Search in Google Scholar

35. Fernández-Hernando C, Suárez Y. MicroRNAs in endothelial cell homeostasis and vascular disease. Curr Opin Hematol. 2018;25: 227-36.10.1097/MOH.0000000000000424617570429547400 Search in Google Scholar

36. Qin S, Zhang C. MicroRNAs in vascular disease. J Cardiovasc Pharmacol. 2011;57:8-12.10.1097/FJC.0b013e318203759b451718421052012 Search in Google Scholar

37. Cui C, Liu G, Huang Y, Lu X, Lu M, Huang X, et al. MicroRNA profiling in great saphenous vein tissues of patients with chronic venous insufficiency. Tohoku J Exp Med. 2012;228(4):341-50.10.1620/tjem.228.34123132275 Search in Google Scholar

38. Huang X, Liu Z, Shen L, Jin Y, Xu G, Zhang Z, et al. Augmentation of miR-202 in varicose veins modulates phenotypic transition of vascular smooth muscle cells by targeting proliferator-activated receptor-γ coactivator-1α. J Cell Biochem. 2019;120(6):10031-42.10.1002/jcb.2828730556158 Search in Google Scholar

39. Anwar MA, Adesina-Georgiadis KN, Spagou K, Vorkas PA, Li JV, Shalhoub J, et al. A comprehensive characterisation of the metabolic profile of varicose veins; implications in elaborating plausible cellular pathways for disease pathogenesis. Sci Rep. 2017;7(1):2989.10.1038/s41598-017-02529-y546275428592827 Search in Google Scholar

40. Zalewski DP, Ruszel KP, Stepniewski A, Galkowski D, Bogucki J, Komsta L, et al. Dysregulations of MicroRNA and gene expression in Chronic Venous Disease. J Clin Med. 2020;9(5):1251.10.3390/jcm9051251728787832344947 Search in Google Scholar

41. Raffetto JD, Qiao X, Koledova VV, Khalil RA. Prolonged increases in vein wall tension increase matrix metalloproteinases and decrease constriction in rat vena cava: Potential implications in varicose veins. J Vasc Surg. 2008;48(2):447-56.10.1016/j.jvs.2008.03.004257503918502086 Search in Google Scholar

42. Biranvand AS, Khosravi M, Esfandiari G, Poursaleh A, Hosseini-Fard SR, Amirfarhangi A, et al. Associations between miR-661, miR-1202, lncRNA-HOTAIR, lncRNA-GAS5 and MMP9 in differentiated M2-macrophages of patients with varicose veins. Int Angiol. 2018;37(6):451-6.10.23736/S0392-9590.18.04022-130558403 Search in Google Scholar

43. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384-8.10.1038/nature1199323446346 Search in Google Scholar

44. Zhang W, Li L, Si Y, Shi Z, Zhu T, Zhuang S, et al. Identification of aberrant circular RNA expression and its potential clinical value in primary great saphenous vein varicosities. Biochem Biophys Res Commun. 2018;499(2):328-37.10.1016/j.bbrc.2018.03.15629577902 Search in Google Scholar

45. Pastar I, Khan AA, Stojadinovic O, Lebrun EA, Medina MC, Brem H, et al. Induction of specific microRNAs inhibits cutaneous wound healing. J Biol Chem. 2012;287(35):29324-35.10.1074/jbc.M112.382135343619722773832 Search in Google Scholar

46. Wu J, Li X, Li D, Ren X, Li Y, Herter EK, et al. MicroRNA-34 family enhances wound inflammation by targeting LGR4. J Invest Dermatol. 2020;140(2):465-76.e11.10.1016/j.jid.2019.07.694 Search in Google Scholar

47. Jin Y, Xu G, Huang J, Zhou D, Huang X, Shen L. Analysis of the association between an insertion/deletion polymorphism within the 3’ untranslated region of COL1A2 and chronic venous insufficiency. Ann Vasc Surg. 2013;27(7):959-63.10.1016/j.avsg.2013.04.00123849651 Search in Google Scholar

48. Sansilvestri-Morel P, Rupin A, Jaisson S, Fabiani JN, Verbeuren TJ, Vanhoutte PM. Synthesis of collagen is dysregulated in cultured fibroblasts derived from skin of subjects with varicose veins as it is in venous smooth muscle cells. Circulation. 2002;106(4):479-83.10.1161/01.CIR.0000022846.22923.46 Search in Google Scholar

Articoli consigliati da Trend MD