Accesso libero

Comparative Analysis of Hedonic Wage and Discrete Choice Models in Valuing Job Safety

  
07 gen 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

MWTP for risk reduction (safety) by the magnitude of 1/1000,000 (unit: USD)

MWTP
Mean l1 u1
ML Model 1 1885 1537 2233
Model 2 2152 1798 2506
PML Model 3 3022 2739 3305
Model 4 2963 2672 3253
HWM FE 25 13 36

Wage Regression by Industry (2016)

Manufactory Construction Catering Transportation Finance Science Service
female −0.272*** (0.0232) −0.198** (0.0785) −0.201*** (0.0337) −0.242*** (0.0798) −0.0981 (0.0703) −0.161*** (0.0575) −0.179*** (0.0575)
eduyear 0.100*** (0.0059) 0.0347** (0.0169) 0.0769*** (0.0101) 0.0495** (0.0216) 0.113*** (0.0193) 0.0915*** (0.0140) 0.0501*** (0.0130)
lnwexp 0.0990*** (0.0212) 0.119* (0.0633) 0.0923** (0.0439) 0.0393 (0.0621) 0.193** (0.0838) 0.150*** (0.0423) 0.0162 (0.0430)
healthlevel 0.00211 (0.0144) 0.0684* (0.0395) 0.0174 (0.0204) 0.0403 (0.0420) −0.0068 (0.0445) −0.0373 (0.0448) 0.0357 (0.0279)
age 0.0088*** (0.0028) 0.0008 (0.0054) 0.0058 (0.0046) 0.0163* (0.0089) 0.0132* (0.0078) 0.0001 (0.0050) 0.0150** (0.006)
_cons 4.27*** (0.120) 5.21*** (0.368) 4.60*** (0.188) 4.82*** (0.532) 3.94*** (0.391) 4.66*** (0.326) 4.83*** (0.252)
N 1008 129 495 117 194 167 459
R2 0.390 0.122 0.206 0.186 0.283 0.301 0.117

Summary Statistics of Job Attributes and Worker Attributes by Industry

Variables Definition Manufacture Obs. 2,257 Construction Obs. 315 Catering Obs. 1,055 Transportation Obs. 263 Finance Obs. 418 Science Obs. 413 Service Obs. 1,204
wage_alt yearly wage income, unit: 1000 TWD in 2014 values 500.53 (264.22) 545.57 (154.25) 454.33 (147.79) 519.98 (167.09) 607.97 (228.02) 492.48 (175.29) 517.53 (204.61)
risk_alt industry mortality rates, unit: 1/1,000,000 23.70 (0.00) 114.50 (8.57) 11.32 (1.65) 48.47 (0.20) 4.03 (1.32) 25.17 (3.64) 8.75 (2.66)
workhour_ alt industry average monthly total work hours, unit: hour 175.74 (0.30) 166.13 (0.15) 162.34 (1.54) 172.74 (0.30) 167.05 (1.09) 172.26 (0.30) 161.10 (1.49)
umem_alt industry unemployment rates, unit: % 2.84 (0.02) 4.58 (0.00) 3.53 (0.09) 3.19 (0.00) 2.83 (0.32) 4.31 (0.20) 2.69 (0.14)

Wage Regression by Industry (2018)

Manufactory Construction Catering Transportation Finance Science Service
female −0.243*** (0.0282) −0.175** (0.0828) −0.240*** (0.0399) −0.211** (0.0985) −0.102 (0.0740) −0.105* (0.0548) −0.231*** (0.0535)
eduyear 0.110*** (0.0066) 0.0622*** (0.0155) 0.0788*** (0.0110) 0.0730*** (0.0271) 0.096*** (0.0197) 0.110*** (0.0152) 0.0611*** (0.0115)
lnwexp 0.0804** (0.0335) 0.256*** (0.0704) 0.211*** (0.0567) 0.313*** (0.101) 0.178** (0.0885) 0.189*** (0.0573) −0.007 (0.0503)
healthlevel 0.0183 (0.0155) 0.00363 (0.0405) 0.0606** (0.0278) 0.159*** (0.0564) 0.0279 (0.0408) 0.0310 (0.0413) 0.0277 (0.0255)
age 0.0117*** (0.0031) −0.0049 (0.0058) −0.0017 (0.006) −0.0134 (0.0092) 0.0099 (0.0079) 0.0012 (0.0041) 0.0098 (0.0062)
_cons 4.07*** (0.140) 4.96*** (0.291) 4.40*** (0.246) 4.53*** (0.621) 4.19*** (0.425) 4.03*** (0.363) 4.95*** (0.254)
N 937 125 394 96 177 158 395
R2 0.363 0.188 0.248 0.215 0.173 0.371 0.142

Regression Results-Discrete Choice Model

CL ML PML
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
wage_alt 0.0017*** 0.0013*** 0.0022*** 0.0018*** 0.0018*** 0.0016***
risk_alt –0.1091*** –0.0986*** –0.1244*** –0.1162*** –0.1632*** –0.1422***
workhour_alt 0.0251** 0.0096 0.1633*** 0.1039*** 0.1529*** 0.1085***
unem_alt −0.7097*** −0.5777*** 0.3434 0.1138 −0.1729 −0.2892
sd(risk_alt) 0.3826*** 0.3186*** 0.2546*** 0.2323***
sd(workhour_alt) 0.4681*** 0.4270*** 0.4601*** 0.4771***
sd(umem_alt) 0.0026 0.0041 2.3677*** 2.7743***
Construction
eduyear −0.2003*** −1.0500** −1.0161***
age −0.0134 0.0941 0.1238**
female −1.0217*** −15.3042*** −11.4380***
_cons 9.0968*** 11.2592*** −42.8469*** −19.2340 −19.0045*** −5.0814
Catering
eduyear −0.1084*** −0.1538* −0.1549**
age −0.0296*** −0.0946*** −0.0997***
female 0.6325*** 3.2816*** 3.2010***
_cons −2.0309*** 0.7968 −1.3451*** 2.2099 −1.3025*** 2.5388*
Transportation
eduyear −0.0522 −0.1804 −0.1984***
age −0.0162 −0.0123 0.0004
female −0.3839* −3.2871*** −2.4575***
_cons −2.9876 1.8339** −8.5789*** −2.9876 −5.4116*** 0.1871
Finance
eduyear 0.2072*** 0.2016** 0.2588***
age 0.0058 −0.0370 −0.0454**
female 0.6392*** 3.1610*** 2.9912***
_cons −3.7770*** −7.1861*** −8.5789*** −9.0142*** −8.6711***
Science
eduyear 0.0321 0.0385 0.0385
age 0.0105 −0.0011 0.0315
female 0.4214*** 0.6866*** 1.1440***
_cons −0.6070*** −1.8486*** −1.9667*** −2.4552*** −2.9669*** −5.4924***
Service
eduyear 0.1624*** 0.1287 0.2505***
age −0.0345*** −0.1047*** −0.1237***
female 1.1372*** 3.9960*** 4.1265***
_cons −2.2029*** −4.0223*** −2.1834*** −2.8356 −2.4155*** −4.1438**
N 32,347 32,347 32,347 32,347 32,347 32,347
Pseudo R2 1.41% 1.32% 30.93% 31.52% 27.36% 28.19%
Log-likelihood −7388.89 −7085.43 −7127.41 −6923.56 −6107.19 −5918.74
AIC 14797.78 14226.87 14280.81 13909.11 12750.25 11899.47

Variable Descriptive Statistics

Category Variable Definition Mean Min Max
Individual (Obs. 4035) wage Yearly wage in 2014 value (unit: 1000 TWD) 537. 2 28.5 5587.7
eduyear Education years 14.1 0.0 22.0
feduyear Father’s education years 9.2 0.0 22.0
female 1 if female, 0 otherwise 0.4 0.0 1.0
age age 35.1 25.0 79.0
marriage 1 if married, 0 otherwise 0.5 0.0 1.0
scale Number of employees in the firm 212.2 2.0 500.0
wexp Working experience years 13.6 1.0 71.0
healthlevel 1 for very good health, 5 for very bad health 3.6 1.0 5.0
Industry (seven industries) risk industry mortality rates, unit: 1/1,000,000 23.6 0.0 124.3
workhour_alt industry average monthly total work hours, unit: hour 169.8 159.8 176.0
unem_alt industry unemployment rates, unit: % 3.2 2.6 4.6
Town (218 towns) TJAN township-level average January temperature (Celsius) from 1981 to 2005 16.4 13.1 20.8
TJUL township-level average July temperature (Celsius) from 1981 to 2005 28.8 26.4 30.3
Regional dummy NORTH 1 if respondent lives in Northern Taiwan, 0 otherwise 0.5 0.0 1.0
CENTER 1 if respondent lives in central Taiwan, 0 otherwise 0.2 0.0 1.0
SOUTH 1 if respondent lives in southern Taiwan, 0 otherwise 0.2 0.0 1.0
EAST 1 if respondent lives in eastern Taiwan, 0 otherwise 0.0 0.0 1.0

The Hedonic Wage Model Results

(1) (2) (3) (4) (5)
year2016 year2018 pool_1 pool_2 FE
risk_alt 0.0006* (0.0003) 0.0011*** (0.0004) 0.0008*** (0.0002) 0.0012*** (0.0003) 0.0012*** (0.0003)
eduyear 0.0660*** (0.0052) 0.0765*** (0.0054) 0.0710*** (0.0038) 0.0711*** (0.0038) 0.0706*** (0.0038)
feduyear 0.0095*** (0.0029) 0.0063** (0.0030) 0.0082*** (0.0021) 0.0079*** (0.0021) 0.0078*** (0.0021)
female −0.2149*** (0.0166) −0.2370*** (0.0190) −0.2248*** (0.0125) −0.2301*** (0.0128) −0.2299*** (0.0128)
age 0.0158*** (0.0039) 0.0113*** (0.0035) 0.0142*** (0.0026) 0.0141*** (0.0026) 0.0138*** (0.0026)
wexp −0.0017 (0.0034) 0.0011 (0.0031) −0.0005 (0.0023) −0.0003 (0.0023) −0.0003 (0.0023)
marry 0.1471*** (0.0170) 0.1156*** (0.0198) 0.1351*** (0.0130) 0.1349*** (0.0129) 0.1346*** (0.0129)
scale 0.0004*** (0.0000) 0.0004*** (0.0000) 0.0004*** (0.0000) 0.0005*** (0.0000) 0.0005*** (0.0000)
TJAN −0.0503*** (0.0066) −0.0519*** (0.0078) −0.0502*** (0.0050) −0.0503*** (0.0050) −0.0507*** (0.0050)
TJUL 0.0874*** (0.0159) 0.1035*** (0.0166) 0.0933*** (0.0115) 0.0899*** (0.0115) 0.0907*** (0.0115)
workhour_alt −0.0045*** (0.0011) −0.0042*** (0.0011)
unem_alt −0.0238* (0.0137) −0.0170 (0.0137)
year 0.0158** (0.0061)
_cons 2.7904*** (0.4185) 2.3943*** (0.4370) 2.6150*** (0.3026) 3.5419*** (0.3666) −28.3320** (12.4421)
N 2293 1742 4035 4035 4035
R2 0.349 0.361 0.357 0.359 0.360