1. bookVolume 22 (2022): Edizione 4 (November 2022)
Dettagli della rivista
License
Formato
Rivista
eISSN
1314-4081
Prima pubblicazione
13 Mar 2012
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

B-Morpher: Automated Learning of Morphological Language Characteristics for Inflection and Morphological Analysis

Pubblicato online: 10 Nov 2022
Volume & Edizione: Volume 22 (2022) - Edizione 4 (November 2022)
Pagine: 111 - 128
Ricevuto: 01 Apr 2022
Accettato: 16 Sep 2022
Dettagli della rivista
License
Formato
Rivista
eISSN
1314-4081
Prima pubblicazione
13 Mar 2012
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

1. Bauer, L. Introducing Linguistic Morphology. Edinburgh, Edinburgh University Press, 2003. Search in Google Scholar

2. Koskenniemi, K. Two-Level Morphology: A General Computational Model for Wordform Recognition and Production. Department of General Linguistics, University of Helsinki, 1983.10.3115/980431.980529 Search in Google Scholar

3. Theron, P., I. Cloete. Automatic Acquisition of Two-Level Morphological Rules. – In: Proc. of 6th Conference on Applied Natural Language Processing, 1997, pp. 103-110.10.3115/974557.974573 Search in Google Scholar

4. Creutz, M., K. Lagus. Unsupervised Models for Morpheme Segmentation and Morphology Learning. – ACM Transactions on Speech and Language Processing (TSLP), Vol. 4, 2007, No 3, p. 34.10.1145/1187415.1187418 Search in Google Scholar

5. Ruokolainen, T., O. Kohonen, S. Virpioja. Painless Semi-Supervised Morphological Segmentation Using Conditional Random_ELDS. – In: Proc. of 14th Conference of the European Chapter of the Association for Computational Linguistics, 2014, pp 84-89.10.3115/v1/E14-4017 Search in Google Scholar

6. Lafferty, J., A. Mc Callum, F. Pereira. Conditional Random_ELDS: Probabilistic Models for Segmenting and Labeling Sequence Data. – In: Proc. of 11th International Conference on Machine Learning, 2002, pp. 282-289. Search in Google Scholar

7. Cotterell, R., T. Muller, A. Fraser, H. Schutze. Labeled Morphological Segmentation with Semi-Markov Models. – In: Proc. of 9th Conference on Computational Natural Language Learning, 2015, pp. 164-174.10.18653/v1/K15-1017 Search in Google Scholar

8. Faruqui, M., Y. Tsvetkov, G. Neubig, C. Dyer. Morphological Injection Generation Using Character Sequence to Sequence Learning. – arXiv preprint arXiv:1512.06110, 2015. Search in Google Scholar

9. Cotterell, R., C. Kirov, J. Sylak-Glassman, D. Yarowsky, J. Eisner, M. Hulden. The SIGMORPHON 2016 Shared Task – Morphological Reinjection. – In: Proc. of 14th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, 2016, pp. 10-22.10.18653/v1/W16-2002 Search in Google Scholar

10. Cotterell, R., C. Kirov, J. Sylak-Glassman, G. Walther, E. Vylomova, P. Xia, M. Faruqui, S. Kubler, D. Yarowsky, J. Eisner et al. CoNLL-SIGMORPHON 2017 Shared Task: Universal Morphological Reinjection in 52 Languages. – arXiv preprint arXiv:1706.09031, 2017. Search in Google Scholar

11. Cotterell, R., C. Kirov, J. Sylak-Glassman, G. Walther, E. Vylomova, A. D. McCarthy, K. Kann, S. Mielke, G. Nicolai, M. Silfverberg et al. The CoNLL{SIGMORPHON 2018 Shared Task: Universal Morphological Reinjection. – arXiv preprint arXiv:1810.07125, 2018. Search in Google Scholar

12. Kann, K., H. Schutze. Unlabeled Data for Morphological Generation with Character-Based Sequence-to-Sequence Models. – arXiv preprint arXiv:1705.06106, 2017. Search in Google Scholar

13. Bahdanau, D., C. Kyunghyun, B. Yoshua. Neural Machine Translation by Jointly Learning to Align and Translate. – arXiv preprint arXiv:1409.0473, 2014. Search in Google Scholar

14. Zhu, Q., Y. Li, X. Li. Character Sequence-to-Sequence Model with Global Attention for Universal Morphological Reinjection. – In: Proc. of CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinjection, 2017, pp. 85-89. Search in Google Scholar

15. Senuma, H., A. Aizawa. Seq2seq for Morphological Reinjection: When DeepLearning Fails. – In: Proc. of CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinjection, 2017, pp. 100-109. Search in Google Scholar

16. Schroder, F., M. Kamlot, G. Billing, A. Kohn. Finding the Way from ä to a: Sub-Character Morphological Injection for the SIGMORPHON 2018 Shared Task. – arXiv preprint arXiv:1809.05742, 2018. Search in Google Scholar

17. Sharma, A., G. Katrapati, D. M. Sharma. IIT (BHU) { IIITH at CoNLLSIGMORPHON 2018 Shared Task on Universal Morphological Reinjection. – In: Proc. of CoNLL SIGMORPHON 2018 Shared Task: Universal Morphological Reinjection, 2018, pp. 105-111. Search in Google Scholar

18. Sorokin, A. What Can We Gain from Language Models for Morphological Injection? – In: Proc. of CoNLL SIGMORPHON 2018 Shared Task: Universal Morphological Reinjection, 2018, pp. 99-104. Search in Google Scholar

19. Yu, M., G. Li, D. Deng, J. Feng. String Similarity Search and Join: A Survey. – Frontiers of Computer Science, Vol. 10, 2016, No 3, pp. 399-417.10.1007/s11704-015-5900-5 Search in Google Scholar

20. Fu, A. W. C., P. M. S. Chan, Y. L. Cheung, Y. S. Moon. Dynamic vp-Tree Indexing for n-Nearest Neighbor Search Given Pair-Wise Distances. – The VLDB Journal, Vol. 9, 2000, No 2, pp. 154-173.10.1007/PL00010672 Search in Google Scholar

21. Tron, V., A. Kornai, G. Gyepesi, L. Nemeth, P. Halacsy, D. Varga. Hunmorph: Open Source Word Analysis. – In: Proc. of Workshop on Software, 2005, pp. 77-85. Search in Google Scholar

22. Tron, V., P. Halacsy, P. Rebrus, A. Rung, P. Vajda, E. Simon. Morphdb.hu: Hungarian Lexical Database and Morphological Grammar. – In: Proc. of 50th International Conference on Language Resources and Evaluation (LREC’06), 2006. Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo