Acceso abierto

B-Morpher: Automated Learning of Morphological Language Characteristics for Inflection and Morphological Analysis

 y   
10 nov 2022

Cite
Descargar portada

The automated induction of inflection rules is an important research area for computational linguistics. In this paper, we present a novel morphological rule induction model called B-Morpher that can be used for both inflection analysis and morphological analysis. The core element of the engine is a modified Bayes classifier in which class categories correspond to general string transformation rules. Beside the core classification module, the engine contains a neural network module and verification unit to improve classification accuracy. For the evaluation, beside the large Hungarian dataset the tests include smaller non-Hungarian datasets from the SIGMORPHON shared task pools. Our evaluation shows that the efficiency of B-Morpher is comparable with the best results, and it outperforms the state-of-theart base models for some languages. The proposed system can be characterized by not only high accuracy, but also short training time and small knowledge base size.

Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Informática, Tecnologías de la información