Accesso libero

Exploratory Data Analysis and Supervised Learning in Plant Phenotyping Studies

, , , , ,  e   
21 nov 2024
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

R. Pieruschka and U. Schurr, Plant Phenotyping: Past, Present, and Future, Plant Phenomics, vol. 2019, p. 7507131, Mar. 2019. Search in Google Scholar

L. Li, Q. Zhang, and D. Huang, A Review of Imaging Techniques for Plant Phenotyping, Sensors, vol. 14, pp. 20078–20111, Nov. 2014. Search in Google Scholar

A. Langstroff, M. C. Heuermann, A. Stahl, and A. Junker, Opportunities and limits of controlledenvironment plant phenotyping for climate response traits, Theoretical and Applied Genetics, vol. 135, pp. 1–16, Jan. 2022. Search in Google Scholar

F. Loreto and S. D’Auria, How do plants sense volatiles sent by other plants?, Trends in Plant Science, vol. 27, pp. 29–38, Jan. 2022. Search in Google Scholar

J. Midzi, D. W. Jeffery, U. Baumann, S. Rogiers, S. D. Tyerman, and V. Pagay, Stress-Induced Volatile Emissions and Signalling in Inter-Plant Communication, Plants, vol. 11, p. 2566, Jan. 2022. Search in Google Scholar

M. Nascimben, M. Venturin, and L. Rimondini, Double-stage discretization approaches for biomarkerbased bladder cancer survival modeling, Communications in Applied and Industrial Mathematics, vol. 12, pp. 29–47, Jan. 2021. Search in Google Scholar

M. B. Pouyan and D. Kostka, Random forest based similarity learning for single cell RNA sequencing data, Bioinformatics, vol. 34, pp. i79–i88, July 2018. Search in Google Scholar

A. Altmann, L. Tolo¸si, O. Sander, and T. Lengauer, Permutation importance: a corrected feature importance measure, Bioinformatics, vol. 26, pp. 1340–1347, 04 2010. Search in Google Scholar

A. Cardellicchio, F. Solimani, G. Dimauro, A. Petrozza, S. Summerer, F. Cellini, and V. Ren‘o, Detection of tomato plant phenotyping traits using YOLOv5-based single stage detectors, Computers and Electronics in Agriculture, vol. 207, p. 107757, Apr. 2023. Search in Google Scholar

S. Kolhar and J. Jagtap, Plant trait estimation and classification studies in plant phenotyping using machine vision - A review, Information Processing in Agriculture, vol. 10, pp. 114–135, Mar. 2023. Search in Google Scholar

J. Casades´us, Y. Kaya, J. Bort, M. M. Nachit, J. L. Araus, S. Amor, G. Ferrazzano, F. Maalouf, M. Maccaferri, V. Martos, H. Ouabbou, and D. Villegas, Using vegetation indices derived from conventional digital cameras as selection criteria for wheat breeding in water-limited environments, Annals of Applied Biology, vol. 150, no. 2, pp. 227–236, 2007. Search in Google Scholar

P. H¨uther, N. Schandry, K. Jandrasits, I. Bezrukov, and C. Becker, ARADEEPOPSIS, an Automated Workflow for Top-View Plant Phenomics using Semantic Segmentation of Leaf States, The Plant Cell, vol. 32, pp. 3674–3688, Dec. 2020. Search in Google Scholar

J. Schrader, P. Shi, D. L. Royer, D. J. Peppe, R. V. Gallagher, Y. Li, R. Wang, and I. J. Wright, Leaf size estimation based on leaf length, width and shape, Annals of Botany, vol. 128, pp. 395–406, Sept. 2021. Search in Google Scholar

T. A. Enders, S. St. Dennis, J. Oakland, S. T. Callen, M. A. Gehan, N. D. Miller, E. P. Spalding, N. M. Springer, and C. D. Hirsch, Classifying cold-stress responses of inbred maize seedlings using RGB imaging, Plant Direct, vol. 3, no. 1, p. e00104, 2019. Search in Google Scholar

F. Zhu, M. Saluja, J. S. Dharni, P. Paul, S. E. Sattler, P. Staswick, H. Walia, and H. Yu, PhenoImage: An open-source graphical user interface for plant image analysis, The Plant Phenome Journal, vol. 4, no. 1, p. e20015, 2021. Search in Google Scholar

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, A. M¨uller, J. Nothman, G. Louppe, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and ´E. Duchesnay, Scikit-learn: Machine Learning in Python, tech. rep., June 2018. arXiv:1201.0490 [cs] type: article. Search in Google Scholar

D. Arthur and S. Vassilvitskii, k-means++: the advantages of careful seeding, in Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 1027–1035, USA: Society for Industrial and Applied Mathematics, Jan. 2007. Search in Google Scholar

K.-S. Chiang, C. H. Bock, I.-H. Lee,M. El Jarroudi, and P. Delfosse, Plant Disease Severity Assessment - How Rater Bias, Assessment Method, and Experimental Design Affect Hypothesis Testing and Resource Use Efficiency, Phytopathology, vol. 106, pp. 1451–1464, Dec. 2016. Search in Google Scholar

J. Zhou, J. Lu, and A. Shallah, All about Sample-Size Calculations for A/B Testing: Novel Extensions & Practical Guide, in Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, pp. 3574–3583, New York, NY, USA: Association for Computing Machinery, Oct. 2023. Search in Google Scholar

R. R. d. Souza, A. Cargnelutti Filho, M. Toebe, and K. C. Bittencourt, Sample size and genetic divergence: a principal component analysis for soybean traits, European Journal of Agronomy, vol. 149, p. 126903, Sept. 2023. Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
1 volte all'anno
Argomenti della rivista:
Matematica, Matematica numerica e computazionale, Matematica applicata