This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Roffi M, Patrono C, Collet JP, Mueller C, Valgimigli M, Andreotti F, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016 Jan 14;37(3):267–315.RoffiMPatronoCColletJPMuellerCValgimigliMAndreottiF2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016Jan14;37(3):267–315.Search in Google Scholar
Geisler T, Schaeffeler E, Dippon J, Winter S, Buse V, Bischofs C, et al. CYP2C19 and nongenetic factors predict poor responsiveness to clopidogrel loading dose after coronary stent implantation. Pharmacog-enomics. 2008 Sep;9(9):1251–9.GeislerTSchaeffelerEDipponJWinterSBuseVBischofsCCYP2C19 and nongenetic factors predict poor responsiveness to clopidogrel loading dose after coronary stent implantation. Pharmacog-enomics. 2008Sep;9(9):1251–9.Search in Google Scholar
Qu J, Zhang H, Rao C, Chen S, Zhao Y, Sun H, et al. Dual Antiplatelet Therapy with Clopidogrel and Aspirin Versus Aspirin Monotherapy in Patients Undergoing Coronary Artery Bypass Graft Surgery. J Am Heart Assoc. 2021 Jun;10(11):e020413.QuJZhangHRaoCChenSZhaoYSunHDual Antiplatelet Therapy with Clopidogrel and Aspirin Versus Aspirin Monotherapy in Patients Undergoing Coronary Artery Bypass Graft Surgery. J Am Heart Assoc. 2021Jun;10(11):e020413.Search in Google Scholar
Tan BEX, Wong PY, Baibhav B, Thakkar S, Azhar AZ, Rao M, et al. Clopidogrel Vs Aspirin Monotherapy Following Dual Antiplatelet Therapy After Percutaneous Coronary Intervention: A Systematic Review and Meta-analysis. Current Problems in Cardiology. 2023 Aug 1;48(8):101174.TanBEXWongPYBaibhavBThakkarSAzharAZRaoMClopidogrel Vs Aspirin Monotherapy Following Dual Antiplatelet Therapy After Percutaneous Coronary Intervention: A Systematic Review and Meta-analysis. Current Problems in Cardiology. 2023Aug1;48(8):101174.Search in Google Scholar
Gurbel PA, Tantry US. Clopidogrel resistance? Thromb Res. 2007;120(3):311–21.GurbelPATantryUS.Clopidogrel resistance?Thromb Res. 2007;120(3):311–21.Search in Google Scholar
Hawken TN, Berenson AM, Klopfenstein J, Leithead CC, Brinster CJ, Sternbergh WC, et al. Clopidogrel Resistance Is Common in Patients Undergoing Vascular and Coronary Interventions. Journal of Vascular Surgery. 2021 Jan 1;73(1):e25–6.HawkenTNBerensonAMKlopfensteinJLeitheadCCBrinsterCJSternberghWCClopidogrel Resistance Is Common in Patients Undergoing Vascular and Coronary Interventions. Journal of Vascular Surgery. 2021Jan1;73(1):e25–6.Search in Google Scholar
Ma TKW, Lam YY, Tan VP, Yan BP. Variability in response to clopidogrel: how important are pharmacogenetics and drug interactions? British Journal of Clinical Pharmacology. 2011 Oct;72(4):697.MaTKWLamYYTanVPYanBP.Variability in response to clopidogrel: how important are pharmacogenetics and drug interactions?British Journal of Clinical Pharmacology. 2011Oct;72(4):697.Search in Google Scholar
Ray S. Clopidogrel resistance: The way forward. Indian Heart Journal. 2014 Sep;66(5):530.RayS.Clopidogrel resistance: The way forward. Indian Heart Journal. 2014Sep;66(5):530.Search in Google Scholar
Giantini A, Timan IS, Dharma R, Sukmawan R, Setiabudy R, Alwi I, et al. The role of clopidogrel resistance-related genetic and epigenetic factors in major adverse cardiovascular events among patients with acute coronary syndrome after percutaneous coronary intervention. Frontiers in Cardiovascular Medicine. 2023 Feb 8;9:1027892.GiantiniATimanISDharmaRSukmawanRSetiabudyRAlwiIThe role of clopidogrel resistance-related genetic and epigenetic factors in major adverse cardiovascular events among patients with acute coronary syndrome after percutaneous coronary intervention. Frontiers in Cardiovascular Medicine. 2023Feb8;9:1027892.Search in Google Scholar
Sangkuhl K, Klein TE, Altman RB. Clopidogrel pathway. Pharmacogenetics and Genomics. 2010 Jul;20(7):463.SangkuhlKKleinTEAltmanRB.Clopidogrel pathway. Pharmacogenetics and Genomics. 2010Jul;20(7):463.Search in Google Scholar
Savi P, Herbert JM, Pflieger AM, Dol F, Delebassee D, Combalbert J, et al. Importance of hepatic metabolism in the antiaggregating activity of the thienopyridine clopidogrel. Biochemical Pharmacology. 1992 Aug 4;44(3):527–32.SaviPHerbertJMPfliegerAMDolFDelebasseeDCombalbertJImportance of hepatic metabolism in the antiaggregating activity of the thienopyridine clopidogrel. Biochemical Pharmacology. 1992Aug4;44(3):527–32.Search in Google Scholar
Jiang XL, Samant S, Lesko LJ, Schmidt S. Clinical pharmacokinetics and pharmacodynamics of clopi-dogrel. Clin Pharmacokinet. 2015 Feb;54(2):147–66.JiangXLSamantSLeskoLJSchmidtS.Clinical pharmacokinetics and pharmacodynamics of clopi-dogrel. Clin Pharmacokinet. 2015Feb;54(2):147–66.Search in Google Scholar
Pan Y, Chen W, Xu Y, Yi X, Han Y, Yang Q, et al. Genetic Polymorphisms and Clopidogrel Efficacy for Acute Ischemic Stroke or Transient Ischemic Attack. Circulation. 2017 Jan 3;135(1):21–33.PanYChenWXuYYiXHanYYangQGenetic Polymorphisms and Clopidogrel Efficacy for Acute Ischemic Stroke or Transient Ischemic Attack. Circulation. 2017Jan3;135(1):21–33.Search in Google Scholar
Hou X, Shi J, Sun H. Gene polymorphism of cytochrome P450 2C19*2 and clopidogrel resistance reflected by platelet function assays: a meta-analysis. Eur J Clin Pharmacol. 2014 Sep;70(9):1041–7.HouXShiJSunH.Gene polymorphism of cytochrome P450 2C19*2 and clopidogrel resistance reflected by platelet function assays: a meta-analysis. Eur J Clin Pharmacol. 2014Sep;70(9):1041–7.Search in Google Scholar
Ford NF. The Metabolism of Clopidogrel: CY-P2C19 Is a Minor Pathway. J Clin Pharmacol. 2016 Dec;56(12):1474–83.FordNF.The Metabolism of Clopidogrel: CY-P2C19 Is a Minor Pathway. J Clin Pharmacol. 2016Dec;56(12):1474–83.Search in Google Scholar
Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacology & Therapeutics. 2013 Apr 1;138(1):103–41.ZangerUMSchwabM.Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacology & Therapeutics. 2013Apr1;138(1):103–41.Search in Google Scholar
Barski OA, Tipparaju SM, Bhatnagar A. The aldoketo reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev. 2008;40(4):553–624.BarskiOATipparajuSMBhatnagarA.The aldoketo reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev. 2008;40(4):553–624.Search in Google Scholar
Nikolaou N, Gathercole LL, Kirkwood L, Dunford JE, Hughes BA, Gilligan LC, et al. AKR1D1 regulates glucocorticoid availability and glucocorticoid receptor activation in human hepatoma cells. The Journal of Steroid Biochemistry and Molecular Biology. 2019 May 1;189:218–27.NikolaouNGathercoleLLKirkwoodLDunfordJEHughesBAGilliganLCAKR1D1 regulates glucocorticoid availability and glucocorticoid receptor activation in human hepatoma cells. The Journal of Steroid Biochemistry and Molecular Biology. 2019May1;189:218–27.Search in Google Scholar
Penning TM, Wangtrakuldee P, Auchus RJ. Structural and Functional Biology of Aldo-Keto Reductase Steroid-Transforming Enzymes. Endocr Rev. 2019 Apr 1;40(2):447–75.PenningTMWangtrakuldeePAuchusRJ.Structural and Functional Biology of Aldo-Keto Reductase Steroid-Transforming Enzymes. Endocr Rev. 2019Apr1;40(2):447–75.Search in Google Scholar
Chen M, Penning TM. 5β-Reduced steroids and human Δ(4)-3-ketosteroid 5β-reductase (AKR1D1). Steroids. 2014 May;83:17–26.ChenMPenningTM.5β-Reduced steroids and human Δ(4)-3-ketosteroid 5β-reductase (AKR1D1). Steroids. 2014May;83:17–26.Search in Google Scholar
Chaudhry AS, Thirumaran RK, Yasuda K, Yang X, Fan Y, Strom SC, et al. Genetic Variation in AldoKeto Reductase 1D1 (AKR1D1) Affects the Expression and Activity of Multiple Cytochrome P450s. Drug Metab Dispos. 2013 Aug;41(8):1538–47.ChaudhryASThirumaranRKYasudaKYangXFanYStromSCGenetic Variation in AldoKeto Reductase 1D1 (AKR1D1) Affects the Expression and Activity of Multiple Cytochrome P450s. Drug Metab Dispos. 2013Aug;41(8):1538–47.Search in Google Scholar
Kapedanovska-Nestorovska A, Dimovski AJ, Sterjev Z, Matevska Geskovska N, Suturkova L, Ugurov P, et al. The AKR1D1*36 (rs1872930) Allelic Variant Is Independently Associated With Clopidogrel Treatment Outcome. Pharmgenomics Pers Med. 2019 Oct; 12:287–95.Kapedanovska-NestorovskaADimovskiAJSterjevZMatevska GeskovskaNSuturkovaLUgurovPThe AKR1D1*36 (rs1872930) Allelic Variant Is Independently Associated With Clopidogrel Treatment Outcome. Pharmgenomics Pers Med . 2019Oct; 12:287–95.Search in Google Scholar
Green MR, Sambrook J. Molecular Cloning: A Laboratory Manual. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2012.GreenMRSambrookJ.Molecular Cloning: A Laboratory Manual. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2012.Search in Google Scholar
Brown TA. Gene Cloning and DNA Analysis: An Introduction. 8th ed. Hoboken (NJ): Wiley-Blackwell; 2020.BrownTA.Gene Cloning and DNA Analysis: An Introduction. 8th ed. Hoboken (NJ): Wiley-Blackwell; 2020.Search in Google Scholar
Shutevska K, Nestorovska AK. Cloning, expression, and purification of recombinant AKR1D1 for therapeutic applications. Acta Pharm. 2024 Dec 17; doi: 10.2478/acph-2025-0003. Online ahead of print.ShutevskaKNestorovskaAK.Cloning, expression, and purification of recombinant AKR1D1 for therapeutic applications. Acta Pharm. 2024Dec17; doi: 10.2478/acph-2025-0003. Online ahead of print.Open DOISearch in Google Scholar
Möller G, Temml V, Cala Peralta A, Gruet O, Rich-omme P, Séraphin D, et al. Analogues of Natural Chalcones as Efficient Inhibitors of AKR1C3. Metabolites. 2022 Feb;12(2):99.MöllerGTemmlVCala PeraltaAGruetORich-ommePSéraphinDAnalogues of Natural Chalcones as Efficient Inhibitors of AKR1C3. Metabolites. 2022Feb;12(2):99.Search in Google Scholar
Nikolaou N, Gathercole LL, Marchand L, Althari S, Dempster NJ, Green CJ, et al. AKR1D1 is a novel regulator of metabolic phenotype in human hepatocytes and is dysregulated in non-alcoholic fatty liver disease. Metabolism. 2019 Oct;99:67–80.NikolaouNGathercoleLLMarchandLAlthariSDempsterNJGreenCJAKR1D1 is a novel regulator of metabolic phenotype in human hepatocytes and is dysregulated in non-alcoholic fatty liver disease. Metabolism. 2019Oct;99:67–80.Search in Google Scholar
Kędzierski J, Allard JA, Odermatt A, Smieško M. Assessment of the inhibitory potential of anabolic steroids towards human AKR1D1 by computational methods and in vitro evaluation. Toxicology Letters. 2023 Aug 1;384:1–13.KędzierskiJAllardJAOdermattASmieškoM.Assessment of the inhibitory potential of anabolic steroids towards human AKR1D1 by computational methods and in vitro evaluation. Toxicology Letters. 2023Aug1;384:1–13.Search in Google Scholar
Laurence L. Brunton, Randa Hilal-Dandan, Bjorn Knollmann, editors. Goodman & Gilman’s The Pharmacological Basis of Therapeutics. 13th ed. New York, NY, USA: McGraw Hill Education, 2017.LaurenceL.BruntonRanda Hilal-DandanBjornKnollmann, editors. Goodman & Gilman’s The Pharmacological Basis of Therapeutics. 13th ed. New York, NY, USA: McGraw Hill Education, 2017.Search in Google Scholar
Rižner TL, Penning TM. Role of Aldo-Keto Reductase Family 1 (AKR1) Enzymes in Human Steroid Metabolism. Steroids. 2013 Nov 1;79:10.1016/j.ster-oids.2013.10.012.RižnerTLPenningTM.Role of Aldo-Keto Reductase Family 1 (AKR1) Enzymes in Human Steroid Metabolism. Steroids. 2013Nov1;79:10.1016/j.ster-oids.2013.10.012.Open DOISearch in Google Scholar
Chen M, Drury JE, Penning TM. Substrate specificity and inhibitor analyses of human steroid 5β-reductase (AKR1D1). Steroids. 2011 Apr;76(5):484–90.ChenMDruryJEPenningTM.Substrate specificity and inhibitor analyses of human steroid 5β-reductase (AKR1D1). Steroids. 2011Apr;76(5):484–90.Search in Google Scholar
Chen M, Drury JE, Christianson DW, Penning TM. Conversion of Human Steroid 5β-Reductase (AKR1D1) into 3β-Hydroxysteroid Dehydrogenase by Single Point Mutation E120H. Journal of Biological Chemistry. 2012 May 11;287(20):16609–22.ChenMDruryJEChristiansonDWPenningTM.Conversion of Human Steroid 5β-Reductase (AKR1D1) into 3β-Hydroxysteroid Dehydrogenase by Single Point Mutation E120H. Journal of Biological Chemistry. 2012May11;287(20):16609–22.Search in Google Scholar