This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Stratton MR, Alexandrov LB. The genomic landscape of cancer. Nature. 2014;508: 307–308. doi: 10.1038/508307aStrattonMRAlexandrovLBThe genomic landscape of cancerNature201450830730810.1038/508307aOpen DOISearch in Google Scholar
Huang S, Soto AM, Sonnenschein C. The end of the genetic paradigm of cancer. PLoS Biology. 2025;23(3): e3003052. https://doi.org/10.1371/journal.pbio.3003052HuangSSotoAMSonnenscheinCThe end of the genetic paradigm of cancerPLoS Biology2025233e3003052https://doi.org/10.1371/journal.pbio.3003052Search in Google Scholar
Kakiuchi N, Ogawa S. Clonal expansion in non-cancer tissues. Nature Reviews Cancer. 2021;21: 239–256. doi: 10.1038/s41568-021-00335-3KakiuchiNOgawaSClonal expansion in non-cancer tissuesNature Reviews Cancer20212123925610.1038/s41568-021-00335-3Open DOISearch in Google Scholar
Mintz B, Illmensee K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proceedings of the National academy of Sciences of the United States of America. 1975;72: 3585–3589. doi: 10.1073/pnas.72.9.3585MintzBIllmenseeKNormal genetically mosaic mice produced from malignant teratocarcinoma cellsProceedings of the National academy of Sciences of the United States of America1975723585358910.1073/pnas.72.9.3585Open DOISearch in Google Scholar
Soto AM, Sonnenschein C. The tissue organization field theory of cancer: a testable replacement for the somatic mutation theory. Bioessays: News and Reviews in Molecular, Cellular and Developmental Biology. 2011;33: 332–340. doi: 10.1002/bies.201100025SotoAMSonnenscheinCThe tissue organization field theory of cancer: a testable replacement for the somatic mutation theoryBioessays: News and Reviews in Molecular, Cellular and Developmental Biology20113333234010.1002/bies.201100025Open DOISearch in Google Scholar
Whitehead AN. Process and reality. New York: Macmillan; 1929.WhiteheadANProcess and realityNew YorkMacmillan1929Search in Google Scholar
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144: 646–674. doi: 10.1016/j.cell.2011.02.013HanahanDWeinbergRAHallmarks of cancer: the next generationCell201114464667410.1016/j.cell.2011.02.013Open DOISearch in Google Scholar
Pisco AO, Huang S. Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse. British Journal of +Cancer. 2015;112: 1725–1732. doi: 10.1038/bjc.2015.146PiscoAOHuangSNon-genetic cancer cell plasticity and therapy-induced stemness in tumour relapseBritish Journal of +Cancer20151121725173210.1038/bjc.2015.146Open DOISearch in Google Scholar
Tisty TD, Coussens LM. Tumor stroma and regulation of cancer development. Annual Review of Pathology. 2006;1: 119–150. doi: 10.1146/annurev.pathol.1.110304.100224TistyTDCoussensLMTumor stroma and regulation of cancer developmentAnnual Review of Pathology2006111915010.1146/annurev.pathol.1.110304.100224Open DOISearch in Google Scholar
Davies PCW, Lineweaver CH. Cancer tumors as Metazoa 1.0: tapping genes of ancient ancestors. Physical Biology. 2011;8: 015001. doi: 10.1088/1478-3975/8/1/015001DaviesPCWLineweaverCHCancer tumors as Metazoa 1.0: tapping genes of ancient ancestorsPhysical Biology2011801500110.1088/1478-3975/8/1/015001Open DOISearch in Google Scholar
de Thé H. Differentiation therapy revisited. Nature Reviews Cancer. 2018;18: 117–127. doi: 10.1038/nrc.2017.103de ThéHDifferentiation therapy revisitedNature Reviews Cancer20181811712710.1038/nrc.2017.103Open DOISearch in Google Scholar