Accesso libero

A Comparative Analysis of Different Varietal of Fresh and Dried Figs by In Vitro Bioaccessibility of Phenolic Compounds and Antioxidant Activities

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Bachir Bey, M. & Louaileche, H. (2015). A comparative study of phytochemical profile and in vitro antioxidant activities of dark and light dried fig (Ficus carica L.) varieties. The Journal of Phytopharmacology, 4(1), 41-48.10.31254/phyto.2015.4108 Search in Google Scholar

2. Bachir Bey, M., Richard, G., Meziant, L., Fauconnier, M.L. & Louaileche, H. (2017). Effects of sun- drying on physicochemical characteristics, phenolic composition and in vitro antioxidant activity of dark fig varieties. Journal of Food Processing and Preservation, 41(5), 1-8. https://doi.org/10.1111/jfpp.1316410.1111/jfpp.13164 Search in Google Scholar

3. Bennick, A. (2002). Interaction of plant polyphenols with salivary proteins. Critical Reviews in Oral Biology & Medicine, 13(2), 184-196. https://doi.org/10.1177/15441113020130020810.1177/15441113020130020812097360 Search in Google Scholar

4. Bouayed, J., Hoffmann, L. & Bohn, T. (2011). Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry, 128(1), 14-21. https://doi.org/10.1016/j.foodchem.2011.02.05210.1016/j.foodchem.2011.02.05225214323 Search in Google Scholar

5. Chaalal, M., Ydjedd, S., Harkat, A., Namoune, H. & Kati, D. (2018). Effect of in vitro gastrointestinal digestion on antioxidant potential of three prickly pear variety extracts. Acta Alimentaria, 47(3), 333-339. https://doi.org/10.1556/066.2018.47.3.910.1556/066.2018.47.3.9 Search in Google Scholar

6. Chawla, A., Kaur, R. & Sharma, A.K. (2012). Ficus carica Linn.: A review on its pharmacognostic, phytochemical and pharmacological aspects. International Journal of Pharmaceutical and Phytopharmacological Research, 1(4), 215-232. Search in Google Scholar

7. Chen, G-L., Chen, S-G., Chen, F., Xie, Y-Q., Han, M-D., Luo, C-X., Zhao, Y-Y. & Gao, Y-Q. (2016). Nutraceutical potential and antioxidant benefits of selected fruit seeds subjected to an in vitro digestion. Journal of Functional Foods, 20, 317-331. https://doi.org/10.1016/j.jff.2015.11.00310.1016/j.jff.2015.11.003 Search in Google Scholar

8. De Ancos, B., Ibanez, E., Reglero, G. & Cano, M.P. (2000). Frozen storage effects on anthocyanins and volatile compounds of raspberry fruit. Journal of Agricultural and Food Chemistry, 48(3), 873-879. https://doi.org/10.1021/jf990747c10.1021/jf990747c10725166 Search in Google Scholar

9. Debib, A., Tir-Touil, A., Mothana, R.A., Meddah, B. & Sonnet, P. (2014). Phenolic Content, Antioxidant and Antimicrobial Activities of Two Fruit Varieties of Algerian Ficus carica L. Journal of Food Biochemistry, 38(2), 207-215. https://doi.org/10.1111/jfbc.1203910.1111/jfbc.12039 Search in Google Scholar

10. Dewanto, V., Wu, X., Adom, K.K. & Liu, R.H. (2002). Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. Journal of Agricultural and Food Chemistry, 50(10), 3010-3014. https://doi.org/10.1021/jf011558910.1021/jf011558911982434 Search in Google Scholar

11. Dupas, C., Marsset-Baglier, A.C., Ordonaud, C.S., Ducept, F.M.G. & Maillard, M-N. (2005). Coffee Antioxidant Properties: Effects of Milk Addition and Processing Conditions. Journal of Food Science, 71(3), S253-S258. https://doi.org/10.1111/j.1365-2621.2006.tb15650.x10.1111/j.1365-2621.2006.tb15650.x Search in Google Scholar

12. Food and Agricultural Organization of the United Nations, 2014. FAOSTAT database. http://faostat.fao.org (accessed 14 February 2018). Search in Google Scholar

13. Granese, T., Cardinale, F., Cozzolino, A., Pepe, S., Ombra, M.N., Nazzaro, F., Coppola, R. & Fratianni, F. (2014). Variation of Polyphenols, Anthocyanins and Antioxidant Power in the Strawberry Grape (Vitis labrusca) after Simulated Gastro-Intestinal Transit and Evaluation of in vitro Antimicrobial Activity. Food and Nutrition Sciences, 05(1), 60-65. DOI:10.4236/fns.2014.5100810.4236/fns.2014.51008 Search in Google Scholar

14. Gullon, B., Pintado, M.E., Fernández-López, J., Pérez-Álvarez, J.A. & Viuda-Martos, M. (2015). In vitro gastrointestinal digestion of pomegranate peel (Punica granatum) flour obtained from co-products: Changes in the antioxidant potential and bioactive compounds stability. Journal of Functional Foods, 19, 617-628. https://doi.org/10.1016/j.jff.2015.09.05610.1016/j.jff.2015.09.056 Search in Google Scholar

15. Gümüşay, Ö.A., Borazan, A.A., Ercal, N. & Demirkol, O. (2015). Drying effects on the antioxidant properties of tomatoes and ginger. Food Chemistry, 173, 156-162. https://doi.org/10.1016/j.foodchem.2014.09.16210.1016/j.foodchem.2014.09.16225466007 Search in Google Scholar

16. Jolayemi, O.S., Olanrewaju, O.J. & Ogunwale, O. (2020). Exploring in vitro antioxidant activity and physicochemical properties of selected under-exploited tropical fruits. Acta Universitatis Cinbinesis, Series E: Food Technology, 24(2), 165-174. https://doi.org/10.2478/aucft-2020-001510.2478/aucft-2020-0015 Search in Google Scholar

17. Kamiloglu, S. & Capanoglu, E. (2013). Investigating the in vitro bioaccessibility of polyphenols in fresh and sun-dried figs (Ficus carica L.). International Journal of Food Science Technology, 48(12), 2621-2629. https://doi.org/10.1111/ijfs.1225810.1111/ijfs.12258 Search in Google Scholar

18. Kamiloglu, S., Pasli, A.A., Ozcelik, B., Van Camp, J. & Capanoglu, E. (2015). Colour retention, anthocyanin stability and antioxidant capacity in black carrot (Daucus carota) jams and marmalades: Effect of processing, storage conditions and in vitro gastrointestinal digestion. Journal of Functional Foods, 13, 1-10. https://doi.org/10.1016/j.jff.2014.12.02110.1016/j.jff.2014.12.021 Search in Google Scholar

19. Kamiloglu, S., Toydemir, G., Boyacioglu, D., Beekwilder, J., Hall, R.D. & Capanoglu, E. (2016). A Review on the Effect of Drying on Antioxidant Potential of Fruits and Vegetables. Critical Reviews in Food Science and Nutrition, 56, S110-S129. https://doi.org/10.1080/10408398.2015.104596910.1080/10408398.2015.104596926191781 Search in Google Scholar

20. Kumaran, A. & Joel karunakaran, R. (2006). Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chemistry, 97(1), 109-114. https://doi.org/10.1016/j.foodchem.2005.03.03210.1016/j.foodchem.2005.03.032 Search in Google Scholar

21. Li, R., Shang, H., Wu, H., Wang, M., Duan, M. & Yang, J. (2018). Thermal inactivation kinetics and effects of drying methods on the phenolic profile and antioxidant activities of chicory (Cichorium intybus L.) leaves. Scientific Reports, 8(1), 1-9. https://doi.org/10.1038/s41598-018-27874-410.1038/s41598-018-27874-4601501029934537 Search in Google Scholar

22. Lim, Y.Y. & Murtijaya, J. (2007). Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT food science and technology, 40(9), 1664-1669. https://doi.org/10.1016/j.lwt.2006.12.01310.1016/j.lwt.2006.12.013 Search in Google Scholar

23. Matłok, N., Gorzelany, J., Piechowiak, T. & Balawejder, M. (2020). Influence of drying temperature on the content of bioactive compounds in scots pine (Pinus sylvestris L.) Shoots as well as yield and composition of essential oils. Acta Universitatis Cinbinesis, Series E: Food Technology, 24(1), 15-24. https://doi.org/10.2478/aucft-2020-000210.2478/aucft-2020-0002 Search in Google Scholar

24. Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carriere, F., Boutrou, R., Corredig, M. & Dupont, D. (2014). A standardised static in vitro digestion method suitable for food–an international consensus. Food & function, 5(6), 1113-1124. DOI: 10.1039/C3FO60702J10.1039/C3FO60702J Search in Google Scholar

25. Mishra, K., Ojha, H. & Chaudhury, NK. (2012). Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chemistry, 130(4), 1036-1043. https://doi.org/10.1016/j.foodchem.2011.07.12710.1016/j.foodchem.2011.07.127 Search in Google Scholar

26. Mizobutsi, G.P., Finger, F.L., Ribeiro, R.A., Puschmann, R., Neves, L.L.D.M. & Mota, W.F.D. (2010). Effect of pH and temperature on peroxidase and polyphenoloxidase activities of litchi pericarp. Scientia Agricola, 67(2), 213-217. https://doi.org/10.1590/S0103-9016201000020001310.1590/S0103-90162010000200013 Search in Google Scholar

27. Morelló, J-R., Motilva, M-J., Tovar, M-J. & Romero, M-P. (2004). Changes in commercial virgin olive oil (cv Arbequina) during storage, with special emphasis on the phenolic fraction. Food Chemistry, 85(3), 357-364. https://doi.org/10.1016/j.foodchem.2003.07.01210.1016/j.foodchem.2003.07.012 Search in Google Scholar

28. Mueller-Harvey, I. (2001). Analysis of hydrolysable tannins. Animal Feed Science and Technology, 91(1-2), 3-20. https://doi.org/10.1016/S0377-8401(01)00227-910.1016/S0377-8401(01)00227-9 Search in Google Scholar

29. Oyaizu, M. (1986). Studies on products of browning reaction. The Japanese Journal of Nutrition and Dietetics, 44(6), 307-315.10.5264/eiyogakuzashi.44.307 Search in Google Scholar

30. Prieto, P., Pineda, M. & Aguilar, M., (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E1. Analytical biochemistry, 269(2), 337-341. https://doi.org/10.1006/abio.1999.401910.1006/abio.1999.401910222007 Search in Google Scholar

31. Roowi, S., Mullen, W., Edwards, C.A. & Crozier, A. (2009). Yoghurt impacts on the excretion of phenolic acids derived from colonic breakdown of orange juice flavanones in humans. Molecular Nutrition & Food Research, 53, S68-S75. https://doi.org/10.1002/mnfr.20080028710.1002/mnfr.20080028719415668 Search in Google Scholar

32. Saura-Calixto, F., Serrano, J. & Goñi, I. (2007). Intake and bioaccessibility of total polyphenols in a whole diet. Food Chemistry, 101(2), 492-501. https://doi.org/10.1016/j.foodchem.2006.02.00610.1016/j.foodchem.2006.02.006 Search in Google Scholar

33. Seraglio, S.K.T., Gonzaga, L.V., Schulz, M., Vitali, L., Micke, G.A., Costa, A.C.O., Fett, R. & Borges, G.D.C. (2018). Effects of gastrointestinal digestion models in vitro on phenolic compounds and antioxidant activity of juçara (Euterpe edulis). International Journal of Food Science Technology, 53(8), 1824-1831. https://doi.org/10.1111/ijfs.1381610.1111/ijfs.13816 Search in Google Scholar

34. Škerget, M., Kotnik, P., Hadolin, M., Hraš, A.R., Simonič, M. & Knez, Ž. (2005). Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chemistry, 89(2), 191-198. https://doi.org/10.1016/j.foodchem.2004.02.02510.1016/j.foodchem.2004.02.025 Search in Google Scholar

35. Solomon, A., Golubowicz, S., Yablowicz, Z., Grossman, S., Bergman, M., Gottlieb, H.E., Altman, A., Kerem, Z. & Flaishman, M.A. (2006). Antioxidant Activities and Anthocyanin Content of Fresh Fruits of Common Fig (Ficus carica L.). Journal of Agricultural and Food Chemistry, 54(20), 7717-7723. https://doi.org/10.1021/jf060497h10.1021/jf060497h17002444 Search in Google Scholar

36. Spanos, G.A. & Wrolstad, R.E. (1990). Influence of processing and storage on the phenolic composition of Thompson Seedless grape juice. Journal of Agricultural and Food Chemistry, 38(7), 1565-1571. https://doi.org/10.1021/jf00097a03010.1021/jf00097a030 Search in Google Scholar

37. Treutter, D. (2006). Significance of flavonoids in plant resistance: a review. Environmental Chemistry Letters, 4(3), 147-157. https://doi.org/10.1007/s10311-006-0068-810.1007/s10311-006-0068-8 Search in Google Scholar

38. Ydjedd, S., Bouriche, S., López-Nicolás, R., Sánchez-Moya, T., Frontela-Saseta, C., Ros-Berruezo, G., Rezgui, F., Louaileche, H. & Kati, D.E. (2017). Effect of in Vitro Gastrointestinal Digestion on Encapsulated and Nonencapsulated Phenolic Compounds of Carob (Ceratonia siliqua L.) Pulp Extracts and Their Antioxidant Capacity. Journal of Agricultural and Food Chemistry, 65(4), 827-835. https://doi.org/10.1021/acs.jafc.6b0510310.1021/acs.jafc.6b0510328094929 Search in Google Scholar

39. Zoubiri, L., Bakir, S., Barkat, M., Carrillo, C. & Capanoglu, E. (2019). Changes in the phenolic profile, antioxidant capacity and in vitro bioaccessibility of two Algerian grape varieties, Cardinal and Dabouki (Sabel), during the production of traditional sun-dried raisins and homemade jam. Journal of Berry Research, 9(4), 709-724. DOI: 10.3233/JBR-19043210.3233/JBR-190432 Search in Google Scholar

eISSN:
2344-150X
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Industrial Chemistry, other, Food Science and Technology