Accesso libero

Feed Additives Supplementation: A Potential Strategy to Ameliorate Heat Stress in Sheep – A Review

, , , , , , , , , , ,  e   
24 lug 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Aatish H.U., Zia-ud-din Sindhu, Iqbal Z., Jabbar A., Tasawar Z. (2007). Prevalence of sheep mange in district Dera Ghazi Khan (Pakistan) and associated hematological/biochemical disturbances. Int. J. Agri. Biol., 9: 917–920. Search in Google Scholar

Abbi S., Qasim A. (2024). Impact of zinc supplementation on nutrients digestibility and blood minerals concentration during hot season of local growing lambs. Mesop. J. Agric., 52: 79–93. Search in Google Scholar

Abdelnour S.A., Abd El-Hack M.E., Khafaga A.F., Arif M., Taha A.E., Noreldin A.E. (2019). Stress biomarkers and proteomics alteration to thermal stress in ruminants: A review. J. Therm. Biol., 79: 120–134. Search in Google Scholar

Aguiar V.S.L., Lopes J.C.O., Ribeiro M.N. (2015). Electrolyte balance and reduced crude protein diets for poultry and swine stressed by heat. Rev. Port. Ciênc. Vet., 110: 192–200. Search in Google Scholar

Al-Dawood A. (2017). Towards heat stress management in small ruminants – a review. Ann. Anim. Sci., 17: 59–88. Search in Google Scholar

Alhidary I.A., Shini S., Al Jassim R.A.M., Gaughan J.B. (2012). Effect of various doses of injected selenium on performance and physiological responses of sheep to heat load. J. Anim. Sci., 90: 2988–2994. Search in Google Scholar

Alhidary I.A., Shini S., Al Jassim R.A., Abudabos A.M., Gaughan J.B. (2015). Effects of selenium and vitamin E on performance, physiological response, and selenium balance in heat-stressed sheep. J. Anim. Sci., 93: 576–588. Search in Google Scholar

Alhidary I.A., Abdelrahman M.M. (2016). Effects of naringin supplementation on productive performance, antioxidant status and immune response in heat-stressed lambs. Small Rumin. Res., 138: 31–36. Search in Google Scholar

Al Mufarji A., Mohammed A.A., Al Zeidi R., Al Masruri H. (2022). Modulation impacts of Moringa oleifera on thermo tolerance parameters and blood indices in subtropical ewes under heat stress. Adv. Anim. Vet. Sci., 10: 1641–1648. Search in Google Scholar

Al-Qaisi M., Horst E.A., Kvidera S.K., McCarthy C.S., Mayorga E.J., Abeyta M.A., Goetz B., Upah N.C., McKilligan D.M., Kolstad B.W., Timms L.L., Baumgard L.H. (2020). Effects of dietary electrolytes, osmolytes, and energetic compounds on body temperature indices in heat-stressed lactating cows. Res. Vet. Sci., 132: 42–48. Search in Google Scholar

Asadi M., Ghoorchi T., Toghdory A. (2024). The effect of different forms of chromium on weight changes and glucose and insulin tolerance test of Afshari ewes during the transition period under the influence of heat stress. Anim. Prod., 26: 33–44. Search in Google Scholar

Ashrafi H., Sadeghi A.A., Chamani M. (2024). Effect of organic selenium supplementation on the antioxidant status, immune response, and the relative expression of IL-2 and IFN-γ genes in ewes during the hot season. Biol. Trace Elem. Res., 202: 2052–2061. Search in Google Scholar

Athira P.R., Sejian V., Sanjo Jose V., Vaswani S., Bagath M., Krishnan G., Beena V., Indira Devi P., Varma G., Bhatta R. (2017). Behavioral responses to livestock adaptation to heat stress challenges. Asian J. Anim. Sci., 11: 1–13. Search in Google Scholar

Awad E.A., Zulkifli I., Ramiah S.K., Khalil E.S., Abdallh M.E. (2021). Prebiotics supplementation: An effective approach to mitigate the detrimental effects of heat stress in broiler chickens. World. Poult. Sci. J., 77: 135–151. Search in Google Scholar

Barnes A., Beatty D., Taylor E., Stockman C., Maloney S., McCarthy M. (2004). Physiology of heat stress in cattle and sheep. Meat. Livest. Austral., 209: 1–36. Search in Google Scholar

Beatty D.T., Barnes A., Fleming P.A., Taylor E., Maloney S.K. (2008). The effect of fleece on core and rumen temperature in sheep. J. Therm. Biol., 33: 437–443. Search in Google Scholar

Belhadj Slimen I., Najar T., Ghram A., Abdrrabba M.J.O.A.P. (2016). Heat stress effects on livestock: molecular, cellular and metabolic aspects, a review. J. Anim. Physiol. Anim. Nutr., 100: 401–412. Search in Google Scholar

Berihulay H., Abied A., He X., Jiang L., Ma Y. (2019). Adaptation mechanisms of small ruminants to environmental heat stress. Animals, 9: 75. Search in Google Scholar

Bernabucci U., Lacetera N., Baumgard L.H., Rhoads R.P., Ronchi B., Nardone A. (2010). Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animals, 4: 1167–1183. Search in Google Scholar

Blackburn H. (1992). The importance of small ruminants-a donor’s perspective. In: Small Ruminant Production: Systems for Sustainability, Sponsored by the Agency for Interanational Development Bureau for Research and Development, Office of Agriculture, in collaboration with V International Conference on Goats, 28–29.02.1992, Park Hotel, New Delhi, 26. Search in Google Scholar

Bokharaeian M., Toghdory A., Ghoorchi T. (2023). Effects of dietary curcumin nano-micelles on growth performance, blood metabolites, antioxidant status, immune and physiological responses of fattening lambs under heat-stress conditions. J. Therm. Biol., 114: 103585. Search in Google Scholar

Broadway P.R., Carroll J.A., Burdick Sanchez N.C., Cravey M.D., Corley J.R. (2020). Some negative effects of heat stress in feed-lot heifers may be mitigated via yeast probiotic supplementation. Front. Vet. Sci., 6: 515. Search in Google Scholar

Cai L., Yu J., Hartanto R., Qi D. (2021). Dietary supplementation with Saccharomyces cerevisiae, Clostridium butyricum and their combination ameliorate rumen fermentation and growth performance of heat-stressed goats. Animals, 11: 2116. Search in Google Scholar

Cain III J.W., Krausman P.R., Morgart J.R., Jansen B.D., Pepper M.P. (2008). Responses of desert bighorn sheep to removal of water sources. Wildl. Monogr., 171: 1–32. Search in Google Scholar

Caroprese M., Albenzio M., Bruno A., Annicchiarico G., Marino R., Sevi A. (2012). Effects of shade and flaxseed supplementation on the welfare of lactating ewes under high ambient temperatures. Small Rumin. Res., 102: 177–185. Search in Google Scholar

Chauhan S.S., Celi P., Leury B.J., Clarke I.J., Dunshea F.R. (2014). Dietary antioxidants at supranutritional doses improve oxidative status and reduce the negative effects of heat stress in sheep. J. Anim. Sci., 92: 3364–3374. Search in Google Scholar

Chauhan S.S., Celi P., Leury B.J., Dunshea F.R. (2015). High dietary selenium and vitamin E supplementation ameliorates the impacts of heat load on oxidative status and acid-base balance in sheep. J. Anim. Sci., 93: 3342–3354. Search in Google Scholar

Chauhan S.S., Ponnampalam E.N., Celi P., Hopkins D.L., Leury B.J., Dunshea F.R. (2016). High dietary vitamin E and selenium improves feed intake and weight gain of finisher lambs and maintains redox homeostasis under hot conditions. Small Rumin. Res., 137: 17–23. Search in Google Scholar

Chauhan S.S., Dunshea F.R., Plozza T.E., Hopkins D.L., Ponnampalam E.N. (2020). The impact of antioxidant supplementation and heat stress on carcass characteristics, muscle nutritional profile and functionality of lamb meat. Animals, 10: 1286. Search in Google Scholar

Chauhan S.S., Rashamol V.P., Bagath M., Sejian V., Dunshea F.R. (2021). Impacts of heat stress on immune responses and oxidative stress in farm animals and nutritional strategies for amelioration. Int. J. Biometeorol., 65: 1231–1244. Search in Google Scholar

Chedid M., Jaber L.S., Giger-Reverdin S., Duvaux-Ponter C., Hamadeh S.K. (2014). Water stress in sheep raised under arid conditions. Canad. J. Anim. Sci., 94: 243–257. Search in Google Scholar

Cheng M., McCarl B., Fei C. (2022). Climate change and livestock production: a literature review. Atmosphere, 13: 140. Search in Google Scholar

Conte G., Ciampolini R., Cassandro M., Lasagna E., Calamari L., Bernabucci U., Abeni F. (2018). Feeding and nutrition management of heat-stressed dairy ruminants. Ital. J. Anim. Sci., 17: 604–620. Search in Google Scholar

Del Río-Avilés A.D., Correa-Calderón A., Avendaño-Reyes L., Macías-Cruz U., Sánchez-Castro M.A., Thomas M.G., Luna-Nevárez P. (2021). Effects of an injectable mineral supplement on physiological responses and milk production of heat-stressed Holstein cows. J. Anim. Behav. Biometeorol., 9. Search in Google Scholar

Dell M., Jones B.F., Olken B.A. (2009). Temperature and income: reconciling new cross-sectional and panel estimates. Am. Econom. Rev., 99: 198–204. Search in Google Scholar

Devendra C. (2001). Small ruminants: Imperatives for productivity enhancement improved livelihoods and rural growth – a review. Asian-Austral. J. Anim. Sci., 14: 1483–1496. Search in Google Scholar

DiGiacomo K., Simpson S., Leury B.J., Dunshea F.R. (2016). Dietary betaine impacts the physiological responses to moderate heat conditions in a dose dependent manner in sheep. Animals, 6: 51. Search in Google Scholar

DiGiacomo K., Chauhan S.S., Dunshea F.R., Leury B.J. (2022). Strategies to ameliorate heat stress impacts in sheep. In: Climate Change and Livestock Production: Recent Advances and Future Perspectives, Sejian V., Chauhan C.C., Devaraj C., Malik P.K., Bhatta R. (eds). Springer Publisher, Singapore, pp: 161–174. Search in Google Scholar

Dos Santos D.D.S., Klauck V., Campigotto G., Alba D.F., Dos Reis J.H., Gebert R.R., Da Silva A.S. (2019). Benefits of the inclusion of açai oil in the diet of dairy sheep in heat stress on health and milk production and quality. J. Therm. Biol., 84: 250–258. Search in Google Scholar

Dubey M., Anjora D. (2021). Nutritional management of livestock during scarcity. In: Approaches for improving livestock productivity through nutrition and animal health management. Manage, e-book, pp: 24–30. Search in Google Scholar

Dunshea F.R., Gonzalez-Rivas P.A., Hung A.T., DiGiacomo K., Chauhan S.S., Leury B.J., Cottrell J.J. (2017). Nutritional strategies to alleviate heat stress in sheep. In: Sheep Production Adapting to Climate Change, Sejian V., Bhatta R., Gaughan J., Malik P.K., Naqvi S.M.K., Lal R. (eds). Springer, pp. 371–388. Search in Google Scholar

Dunshea F.R., Leury B.J., DiGiacomo K., Cottrell J.J., Chauhan S.S. (2022). Nutritional amelioration of thermal stress impacts in dairy cows. In: Climate Change and Livestock Production: Recent Advances and Future Perspectives, Singapore. Springer Singapore, pp. 141–150. Search in Google Scholar

El-Badawy M., Youssef H., Hafez Y., El-Sanafawy H., El-Maghraby M. (2018). Effect of rocket oil addition on productive and reproductive performance of growing ram lambs under hot climate condition. J. Anim. Poult. Prod., 9: 9–15. Search in Google Scholar

El-Darawany A.A. (1999). Improving semen quality of heat stressed rams in Egypt. Ind. J. Anim. Sci., 69. Search in Google Scholar

Ellamie A.M., Fouda W.A., Ibrahim W.M., Ramadan G. (2020). Dietary supplementation of brown seaweed (Sargassum latifolium) alleviates the environmental heat stress-induced toxicity in male Barki sheep (Ovis aries). J. Therm Biol., 89: 102561. Search in Google Scholar

El-Moty A., El-Barody M.A.A., Saleh A.A K. (2010). Alleviation of heat stress in Farafra sheep by dietary minerals supplementation. Egypt. J. Sheep Goats Sci., 5: 1–12. Search in Google Scholar

El-Shahat K.H., Abdel Monem U.M. (2011). Effects of dietary supplementation with vitamin E and/or selenium on metabolic and reproductive performance of Egyptian Baladi ewes under subtropical conditions. World Appl. Sci. J., 12: 1492–1499. Search in Google Scholar

Escobedo-Gallegos L.D.G., Estrada-Angulo A., Castro-Pérez B.I., Urías-Estrada J.D., Calderón-Garay E., Ramírez-Santiago L., Plascencia A. (2023). Essential oils combined with vitamin D3 or with probiotic as an alternative to the ionophore monensin supplemented in high-energy diets for lambs long-term finished under subtropical climate. Animals, 13: 2430. Search in Google Scholar

Estrada-Angulo A., Zapata-Ramírez O., Castro-Pérez B.I., Urías-Estrada J.D., Gaxiola-Camacho S., Angulo-Montoya C., Plascencia A. (2021). The effects of single or combined supplementation of probiotics and prebiotics on growth performance, dietary energetics, carcass traits, and visceral mass in lambs finished under sub-tropical climate conditions. Biology, 10: 1137. Search in Google Scholar

Fadl A.M., Abdelnaby E.A., El-Sherbiny H.R. (2022). Supplemental dietary zinc sulphate and folic acid combination improves testicular volume and haemodynamics, testosterone levels and semen quality in rams under heat stress conditions. Reprod. Domest. Anim., 57: 567–576. Search in Google Scholar

Finocchiaro R., Van Kaam J.B.C.H.M., Portolano B., Misztal I. (2005). Effect of heat stress on production of Mediterranean dairy sheep. J. Dairy Sci., 88: 1855–1864. Search in Google Scholar

Forsberg N.E., Al-Maqbaly R., Al-Halhali A., Ritchie A., Srikandakumar A. (2002). Assessment of molasses–urea blocks for goat and sheep production in the Sultanate of Oman: Intake and growth studies. Trop. Anim. Health Prod., 34: 231–239. Search in Google Scholar

Gaughan J.B., Mader T.L., Holt S.M., Lisle A. (2008). A new heat load index for feedlot cattle. J. Anim. Sci., 86: 226–234. Search in Google Scholar

Ghorbani A., Sarir H., Afzali N., Kerrmani Moakhar H. (2017). The effect of probiotic and prebiotic on antioxidant system, immune system, liver enzymes activity and some blood parameters in Ross 308 broiler chickens under heat stress. Iran. J. Anim. Sci. Res., 8: 688–700. Search in Google Scholar

Gonzalez-Rivas P.A., DiGiacomo K., Giraldo P.A., Leury B.J., Cottrell J.J., Dunshea F.R. (2017). Reducing rumen starch fermentation of wheat with three percent sodium hydroxide has the potential to ameliorate the effect of heat stress in grain-fed wethers. J. Anim. Sci., 95: 5547–5562. Search in Google Scholar

Gowane G.R., Gadekar Y.P., Prakash V., Kadam V., Chopra A., Prince L.L.L. (2017). Climate change impact on sheep production: Growth, milk, wool, and meat. In: Sheep Production Adapting to Climate Change, Sejian V., Bhatta R., Gaughan J., Malik P.K., Naqvi S.M.K., Lal R. (eds). Springer, pp. 31–69. Search in Google Scholar

Hashemzadeh F., Rafeie F., Hadipour A., Rezadoust M.H. (2022). Supplementing a phytogenic-rich herbal mixture to heat-stressed lambs: Growth performance, carcass yield, and muscle and liver antioxidant status. Small Rumin. Res., 206: 106596. Search in Google Scholar

Hashemzadeh F., Rafeie F., Hadipour A., Rezadoust M.H. (2023). Effect of adding a phytogenic-rich herbal mixture to diet on the expression pattern of some insulin hormone metabolism-related candidate genes of heat-stressed fattening Afshari-Shal lambs. Anim. Prod. Res., 12: 25–37. Search in Google Scholar

Hayder M., Saba F.E., Saleh A.A.K. (2016). Using different types of selenium to enhance Saidi and Farafra sheep productivity under heat stress in middle Egypt. Egypt. J. Sheep. Goat. Sci., 11: 217–228. Search in Google Scholar

Haydon K.D., West J.W., McCarter M.N. (1990). Effect of dietary electrolyte balance on performance and blood parameters of growing-finishing swine fed in high ambient temperatures. J. Anim. Sci., 68: 2400–2406. Search in Google Scholar

Hung A.T., Leury B.J., Sabin M.A., Fahri F., DiGiacomo K., Lien T.F., Dunshea F.R. (2021). Dietary nano chromium picolinate can ameliorate some of the impacts of heat stress in cross-bred sheep. Anim. Nutr., 7: 198–205. Search in Google Scholar

Hung A.T., Leury B.J., Sabin M.A., Fahri F., DiGiacomo K., Lien T.F., Dunshea F.R. (2023). Nano-chromium picolinate and heat stress enhance insulin sensitivity in cross-bred sheep. Anim. Nutr., 13: 173–184. Search in Google Scholar

Inbaraj S., Sejian V., Bagath M., Bhatta R. (2016). Impact of heat stress on immune responses of livestock: A review. Pertanika J. Trop. Agric. Sci., 39. Search in Google Scholar

Indu S., Pareek A. (2015). A review: Growth and physiological adaptability of sheep to heat stress under semi-arid environment. Int. J. Emerg., 2: 3188–3198. Search in Google Scholar

Indu S., Sejian V., Naqvi S.M.K. (2014). Impact of simulated heat stress on growth, physiological adaptability, blood metabolites and endocrine responses in Malpura ewes under semiarid tropical environment. Anim. Prod. Sci., 55: 766–776. Search in Google Scholar

IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Core Writing Team, R.K. Pachauri and L.A. Meyer (eds)). IPCC, Geneva, Switzerland, https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_summary-for-policymakers.pdf Search in Google Scholar

Jaber L., Chedid M., Hamadeh S. (2013). Water stress in small ruminants. In: Responses of organisms to water stress, Akıncı S. (ed.). IntechOpen, 115: 149. Search in Google Scholar

Jamal A., Rashid M.A., Malik M.I. (2021). Effects of sodium bicarbonate and chromium propionate supplementation on growth performance, blood indices of Beetal bucks under heat stress. Trop. Anim. Health. Prod., 53: 1–9. Search in Google Scholar

Jiang Z., Wan Y., Li P., Xue Y., Cui W., Che Q., Mao D. (2019). Effect of curcumin supplement in summer diet on blood metabolites, antioxidant status, immune response, and testicular gene expression in hu sheep. Animals, 9: 720. Search in Google Scholar

Joshi A., Saini N., Jhirwal A.K., Prajapat U.K., Goswami S.C. (2023). Effect of herbal additives amla (Emblica officinalis) and giloy (Tinospora cordifolia) on physiological parameters of Magra lambs under semi-intensive management system in the arid zone of Rajasthan. Biol. Forum., 15: 215–218. Search in Google Scholar

Kadzere C.T., Murphy M.R., Silanikove N., Maltz E. (2002). Heat stress in lactating dairy cows: a review. Livest. Prod. Sci., 77: 59–91. Search in Google Scholar

Kalaitsidis K., Sidiropoulou E., Tsiftsoglou O., Mourtzinos I., Moschakis T., Basdagianni Z., Giannenas I. (2021). Effects of cornus and its mixture with oregano and thyme essential oils on dairy sheep performance and milk, yoghurt and cheese quality under heat stress. Animals, 11: 1063. Search in Google Scholar

Kamal T.H., Habeeb A.A., Abdel-Samee A.M., Abdel-Razik M.A. (1989). Supplementation of heat-stressed Friesian cows with urea and mineral mixture and its effect on milk production in the subtropics. Proc. Symposium on Ruminant Production in the Dry Subtropics: Constraints and Potentials. Cairo, Egypt. EAAP Publ., 38: 183–185. Search in Google Scholar

Kassab A.Y., Hamdon H.A., Mohammed A.A. (2017). Impact of probiotics supplementation on some productive performance, digestibility coefficient and physiological responses of beef bulls under heat stress conditions. Egypt. J. Nutr. Feeds., 20: 29–39. Search in Google Scholar

Kawas J.R., Garcia-Castillo R., Garza-Cazares F., Fimbres-Durazo H., Olivares-Saenz E., Hernandez-Vidal G., Lu C.D. (2007). Effects of sodium bicarbonate and yeast on productive performance and carcass characteristics of light-weight lambs fed finishing diets. Small Rumin. Res., 67: 157–163. Search in Google Scholar

Khalid M.F., Shahzad M.A., Sarwar M., Rehman A.U., Sharif M., Mukhtar N. (2011). Probiotics and lamb performance: A review. Afr. J. Agric. Res., 6: 5198–5203. Search in Google Scholar

Khan Z.I., Ashraf M., Hussain A. (2007). Evaluation of macro mineral contents of forages: Influence of pasture and seasonal variation. Asian-Austral. J. Anim. Sci., 20: 908–913. Search in Google Scholar

Khattab I.M., Abdel-Wahed A.M., Khattab A.S., Anele U.Y., El-Keredy A., Zaher M. (2020). Effect of dietary probiotics supplementation on intake and production performance of ewes fed Atriplex hay-based diet. Livest. Sci., 237: 104065. Search in Google Scholar

Kumar B.V., Singh G., Meur S.K. (2010). Effects of addition of electrolyte and ascorbic acid in feed during heat stress in buffaloes. Asian-Austral. J. Anim. Sci., 23: 880–888. Search in Google Scholar

Lacetera N. (2019). Impact of climate change on animal health and welfare. Anim. Front., 9: 26–31. Search in Google Scholar

Lacetera N., Bernabucci U., Scalia D., Ronchi B., Kuzminsky G., Nardone A. (2005). Lymphocyte functions in dairy cows in hot environment. Int. J. Biometeorol., 50: 105–110. Search in Google Scholar

Lees A.M., Lees J.C., Sejian V., Gaughan J. (2017). Management strategies to reduce heat stress in sheep. In: Sheep Production Adapting to Climate Change, Sejian V., Bhatta R., Gaughan J., Malik P.K., Naqvi S.M.K., Lal R. (eds). Springer, pp. 349–370. Search in Google Scholar

Li C., Hao X., Willms W.D., Zhao M., Han G. (2009). Seasonal response of herbage production and its nutrient and mineral contents to long-term cattle grazing on a rough fescue grassland. Agric. Ecosyst. Environ., 132: 32–38. Search in Google Scholar

Li Y.X., Feng X.P., Wang H.L., Meng C.H., Zhang J., Qian Y., Cao S.X. (2019 a). Transcriptome analysis reveals corresponding genes and key pathways involved in heat stress in Hu sheep. Cell Stress Chap., 24: 1045–1054. Search in Google Scholar

Li Y., Kong L., Deng M., Lian Z., Han Y., Sun B., Guo Y., Liu G., Liu D. (2019 b). Heat stress-responsive transcriptome analysis in the liver tissue of Hu sheep. Genes, 10: 395. Search in Google Scholar

Liu H., Li K., Mingbin L., Zhao J., Xiong B. (2016). Effects of chestnut tannins on the meat quality, welfare, and antioxidant status of heat-stressed lambs. Meat Sci., 116: 236–242. Search in Google Scholar

Mahdi A.S., Mohammed A.H., Zaini Z.E., Al-Khuzai H.M. (2020). The influence of adding raisins flour with or without probiotic for reducing heat stress impacts in Iraqi Awassi lambs. Plant Arch., 20: 2694–2696. Search in Google Scholar

Majekodunmi B.C., Ogunwole O.A., Sokunbi O.A. (2012). Effect of supplemental electrolytes and ascorbic acid on the performance and carcass characteristics of broiler raised during high temperature period in Nigeria. Int. J. Poult. Sci., 11: 125–130. Search in Google Scholar

Mao H., Ji W., Yun Y., Zhang Y., Li Z., Wang C. (2023). Influence of probiotic supplementation on the growth performance, plasma variables, and ruminal bacterial community of growth-retarded lamb. Front. Microbiol., 14: 1216534. Search in Google Scholar

Marai I.F.M., El-Darawany A.A., Fadiel A., Abdel-Hafez M.A.M. (2007). Physiological traits as affected by heat stress in sheep – a review. Small Rumin. Res., 71: 1–12. Search in Google Scholar

Marai I.F.M., El-Darawany A.A., Fadiel A., Abdel-Hafez M.A.M. (2008). Reproductive performance traits as affected by heat stress and its alleviation in sheep. Trop. Subtrop. Agroecosyst., 8: 209– 234. Search in Google Scholar

Marcone G., Kaart T., Piirsalu P., Arney D.R. (2021). Panting scores as a measure of heat stress evaluation in sheep with access and with no access to shade. Appl. Anim. Behav. Sci., 240: 105350. Search in Google Scholar

Marshall N.A., Crimp S., Curnock M., Greenhill M., Kuehne G., Leviston Z., Ouzman J. (2016). Some primary producers are more likely to transform their agricultural practices in response to climate change than others. Agric. Ecosyst. Environ., 222: 38–47. Search in Google Scholar

Masters D.G. (2018). Practical implications of mineral and vitamin imbalance in grazing sheep. Anim. Prod. Sci., 58: 1438–1450. Search in Google Scholar

McManus C.M., Faria D.A., Lucci C.M., Louvandini H., Pereira S.A., Paiva S.R. (2020). Heat stress effects on sheep: Are hair sheep more heat resistant? Theriogenology, 155: 157–167. Search in Google Scholar

Monteiro A.L.G., Faro A.M.C.F., Peres M.T.P., Batista R., Poli C.H.E.C., Villalba J.J. (2018). The role of small ruminants on global climate change. Acta Sci. Anim. Sci., 40. Search in Google Scholar

Nisar N.A., Sultana M., Waiz H.A., Para P.A., Dar S.A. (2013). Oxidative stress – threat to animal health and production. Int. J. Livest. Res., 3: 76–83. Search in Google Scholar

Oluwatayo I.B., Oluwatayo T.B. (2012). Small ruminants as a source of financial security: a case study of women in rural Southwest Nigeria. Institute for Money, Technology and Financial Inclusion (IMTFI), Working Paper, 1: 21. Search in Google Scholar

Osei-Amponsah R., Chauhan S.S., Leury B.J., Cheng L., Cullen B., Clarke I.J., Dunshea F.R. (2019). Genetic selection for thermotolerance in ruminants. Animals, 9: 948. Search in Google Scholar

Prathap P., Chauhan S.S., Leury B.J., Cottrell J.J., Joy A., Zhang M., Dunshea F.R. (2022). Reducing the fermentability of wheat with a starch binding agent reduces some of the negative effects of heat stress in sheep. Animals, 12: 1396. Search in Google Scholar

Qureshi M.S., Akhtar S., Khan R.U. (2017). The effect of vitamin E and selenium on physiological, hormonal and antioxidant status of Damani and Balkhi sheep submitted to heat stress. Appl. Biol. Chem., 60: 585–590. Search in Google Scholar

Rashid M.M., Hossain M.M., Azad M.A.K., Hashem M.A. (2013). Long term cyclic heat stress influences physiological responses and blood characteristics in indigenous sheep. Bangladesh. J. Anim. Sci., 42: 96–100. Search in Google Scholar

Rao T.N., Prasad J.R., Rao Z.P., Prasad P.E. (2003). Supplementation of probiotics on growth performance in sheep. Indian J. Anim. Nutr., 20: 224–226. Search in Google Scholar

Ringseis R., Eder K. (2022). Heat stress in pigs and broilers: role of gut dysbiosis in the impairment of the gut-liver axis and restoration of these effects by probiotics, prebiotics and synbiotics. J. Anim. Sci. Biotechnol., 13: 1–16. Search in Google Scholar

Rochfort S., Parker A.J., Dunshea F.R. (2008). Plant bioactives for ruminant health and productivity. Phytochemistry, 69: 299–322. Search in Google Scholar

Rojas-Downing M.M., Nejadhashemi A.P., Harrigan T., Woznicki S.A. (2017). Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag., 16: 145–163. Search in Google Scholar

Saker K.E., Fike J.H., Veit H., Ward D.L. (2004). Brown seaweed-(TascoTM) treated conserved forage enhances antioxidant status and immune function in heat-stressed wether lambs. J. Anim. Physiol. Anim. Nutr., 88: 122–130. Search in Google Scholar

Saleh A.A.K., Gomaa A.A.A.I. (2016). Physiological responses and lactational performance of Farafra and Saidi sheep as affected by supplementation of probiotic with natural antioxidants. Egypt. J. Nutr. Feeds., 19: 439–450. Search in Google Scholar

Saleh A.A.K., Abozed G.F. (2018). Impact of using chamomile flower as a feed additive on reproductive performance and physiological responses of Farafra ewes during heat stress conditions. Egypt. J. Nutr. Feeds., 21: 635–643. Search in Google Scholar

Saleh A.A.K., Abozed G.F., Zanouny A.I. (2020). Effect of different dietary electrolyte balance levels on physiological responses and metabolic rate of rams exposed to heat stress conditions. J. Anim. Poult. Prod., 11: 457–463. Search in Google Scholar

Saleh A.A., Soliman M.M., Yousef M.F., Eweedah N.M., El-Sawy H.B., Shukry M., Eltahan H.M. (2023). Effects of herbal supplements on milk production quality and specific blood parameters in heat-stressed early lactating cows. Front. Vet. Sci., 10: 1180539. Search in Google Scholar

Salles M.S.V., Zanetti M.A., Salles F.A. (2008). Effect of monensin on mineral balance in growing ruminants reared under different environmental temperatures. Anim. Feed Sci. Technol., 141: 233–245. Search in Google Scholar

Samarin A.A., Norouzian M.A., Afzalzadeh A. (2022). Effect of trace mineral source on biochemical and hematological parameters, digestibility, and performance in growing lambs. Trop Anim. Health Prod., 54: 40. Search in Google Scholar

Sanchez W.K., Beede D.K., Cornell J.A. (1994). Interactions of sodium, potassium, and chloride on lactation, acid-base status, and mineral concentrations. J. Dairy Sci., 77: 1661–1675. Search in Google Scholar

Sathisha K., Narayana Swamy G., Shrikant K., Ramesh P., Sathyanarayana M., Sudha G. (2020). Metabolic hormonal and serum electrolytes profile of Mandya sheep during summer stress upon dietary supplementation of antioxidants. J. Entomol. Zool. Stud., 8: 408–411. Search in Google Scholar

Schingoethe D.J., Linke K.N., Kalscheur K.F., Hippen A.R., Rennich D.R., Yoon I. (2004). Feed efficiency of mid-lactation dairy cows fed yeast culture during summer. J. Dairy Sci., 87: 4178–4181. Search in Google Scholar

Seifalinasab A., Mousaie A., Doomary H. (2022). Dietary high chromium-methionine supplementation in summer-exposed finishing lambs: Impacts on feed intake, growth performance, and blood cells, antioxidants, and minerals. Biol. Trace Elem. Res., 200: 156–163. Search in Google Scholar

Sejian V., Maurya V.P., Kumar K., Naqvi S.M.K. (2012 a). Effect of multiple stresses (thermal, nutritional, and walking stress) on the reproductive performance of Malpura ewes. Vet. Med. Intl., 2012. Search in Google Scholar

Sejian V., Valtorta S., Gallardo M., Singh A.K. (2012 b). Ameliorative measures to counteract environmental stresses. In: Environmental stress and amelioration in livestock production, Sejian V., Naqvi S.M.K., Ezeji T., Lakritz J., Lal R. (eds). Springer publisher, Germany, pp. 153–180. Search in Google Scholar

Sejian V., Singh A.K., Sahoo A., Naqvi S.M.K. (2014 a). Effect of mineral mixture and antioxidant supplementation on growth, reproductive performance and adaptive capability of m alpura ewes subjected to heat stress. J. Anim. Physiol. Anim. Nutr., 98: 72–83. Search in Google Scholar

Sejian V., Bahadur S., Naqvi S.M. (2014 b). Effect of nutritional restriction on growth, adaptation physiology and estrous responses in Malpura ewes. Anim. Biol., 64: 189–205. Search in Google Scholar

Sejian V., Iqbal Hyder I.H., Malik P.K., Soren N.M., Mech A., Mishra A., Ravindra J.P. (2015). Strategies for alleviating abiotic stress in livestock. In: Livestock Production and Climate Change, Malik P.K., Bhatta R., Takahashi J., Kohn R.A., Prasad C.S. (eds). Wall-ingford UK: CABI, pp. 25–60. Search in Google Scholar

Sejian V., Bhatta R., Gaughan J., Malik P.K., Naqvi S.M.K., Lal R. (2017 a). Adapting sheep production to climate change. In: Sheep Production Adapting to Climate Change, Sejian V., Bhatta R., Gaughan J., Malik P.K., Naqvi S.M.K., Lal R. (eds). Springer, pp. 1–29. Search in Google Scholar

Sejian V., Hyder I., Maurya V.P., Bagath M., Krishnan G., Aleena J., Naqvi S.M.K. (2017 b). Adaptive mechanisms of sheep to climate change. In: Sheep Production Adapting to Climate Change, Sejian V., Bhatta R., Gaughan J., Malik P.K., Naqvi S.M.K., Lal R. (eds). Springer, pp. 117–147. Search in Google Scholar

Sejian V., Bhatta R., Gaughan J.B., Dunshea F.R., Lacetera N. (2018). Adaptation of animals to heat stress. Animal, 12: 431–444. Search in Google Scholar

Sejian V., Silpa M.V., Lees A.M., Krishnan G., Devaraj C., Bagath M., Gaughan J.B. (2021). Opportunities, challenges, and ecological footprint of sustaining small ruminant production in the changing climate scenario. In: Agroecological footprints management for sustainable food system, Banerjee A., Meena R.S., Jhariya M.K., Yadav D.K. (eds). Springer, pp. 365–396. Search in Google Scholar

Sevi A., Caroprese M. (2012). Impact of heat stress on milk production, immunity and udder health in sheep: A critical review. Small Rumin. Res., 107: 1–7. Search in Google Scholar

Shakirullah Qureshi M.S., Akhtar S., Khan R.U. (2017). The effect of vitamin E and selenium on physiological, hormonal and antioxidant status of Damani and Balkhi sheep submitted to heat stress. Appl. Biol. Chem., 60: 585–590. Search in Google Scholar

Shinde A.K., Sejian V. (2013). Sheep husbandry under changing climate scenario in India: An overview. Indian J. Anim. Sci., 83: 998–1008. Search in Google Scholar

Silanikove N. (2000). Effects of heat stress on the welfare of extensively managed domestic ruminants. Liv. Prod. Sci., 67: 1–18. Search in Google Scholar

Silpa M.V., Sejian V., Koenig S., Devaraj C., Shashank C.G., Kolte A.P., Bhatta R. (2022). Skin based novel approaches for establishing climate resilience in goats. In: Climate Change and Livestock Production: Recent Advances and Future Perspectives, Sejian V., Chauhan C.C., Devaraj C., Malik P.K., Bhatta R. (eds). Springer Publisher, Singapore, pp: 113–126. Search in Google Scholar

Singh S.K., Meena H.R., Kolekar D.V., Singh Y.P. (2012). Climate change impacts on livestock and adaptation strategies to sustain livestock production. J. Vet. Adv., 2: 407–412. Search in Google Scholar

Sivakumar A.V.N., Singh G., Varshney V.P. (2010). Antioxidants supplementation on acid base balance during heat stress in goats. Asian-Austral. J. Anim. Sci., 23: 1462–1468. Search in Google Scholar

Slimen I.B., Chniter M., Najar T., Ghram A. (2019 a). Meta-analysis of some physiologic, metabolic and oxidative responses of sheep exposed to environmental heat stress. Livest. Sci., 229: 179–187. Search in Google Scholar

Slimen I.B., Chabaane H., Chniter M., Mabrouk M., Ghram A., Miled K., Najar T. (2019 b). Thermoprotective properties of Opuntia ficus-indica f. inermis cladodes and mesocarps on sheep lymphocytes. J. Therm. Biol., 81: 73–81. Search in Google Scholar

Soliman S.M., El-Shinnawy A.M., El-Morsy A.M. (2016). Effect of probiotic or prebiotic supplementation on the productive performance of Barki Lambs. J. Anim. Poult., 7: 369–346. Search in Google Scholar

Soren N.M. (2012). Nutritional manipulations to optimize productivity during environmental stresses in livestock. In: Environmental Stress and Amelioration in Livestock Production, Sejian V., Naqvi S.M.K., Ezeji T., Lakritz J., Lal R. (eds). Springer Publisher, Germany, pp. 181–218. Search in Google Scholar

Stewart W.C., Scasta J.D., Taylor J.B., Murphy T.W., Julian A.A.M. (2021). Invited review: Mineral nutrition considerations for extensive sheep production systems. Appl. Anim. Sci., 37: 256–272. Search in Google Scholar

Sucu E., Udum D., Güneş N., Canbolat Ö., Filya I. (2017). Influence of supplementing diet with microalgae (Schizochytrium limacinum) on growth and metabolism in lambs during the summer. Turk. J. Vet. Anim. Sci., 41: 167–174. Search in Google Scholar

Tripathi M.K., Santra A., Chaturvedi O.H., Karim S.A. (2004). Effect of sodium bicarbonate supplementation on ruminal fluid pH, feed intake, nutrient utilization and growth of lambs fed high concentrate diets. Anim. Feed Sci. Tech., 111: 27–39. Search in Google Scholar

United Nations (2019). The World Population Prospects 2019: Highlights. New York: United Nations; https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf. Search in Google Scholar

Vinod K. (2015). Effect of minerals on dairy animal reproduction – a review. Int. J. Livest. Res., 5: 1–10. Search in Google Scholar

Vosooghi-Poostindoz V., Foroughi A.R., Delkhoroshan A., Ghaffari M.H., Vakili R., Soleimani A.K. (2014). Effects of different levels of protein with or without probiotics on growth performance and blood metabolite responses during pre-and post-weaning phases in male Kurdi lambs. Small Rumin. Res., 117: 1–9. Search in Google Scholar

Wang H., Liu Z., Huang M., Wang S., Cui D., Dong S., Liu Y. (2016). Effects of long-term mineral block supplementation on antioxidants, immunity, and health of Tibetan sheep. Biol. Trace Elem. Res., 172: 326–335. Search in Google Scholar

Wanjala G., Astuti P.K., Bagi Z., Kichamu N., Strausz P., Kusza S. (2023). A review on the potential effects of environmental and economic factors on sheep genetic diversity: Consequences of climate change. Saudi J. Biol. Sci., 30: 103505. Search in Google Scholar

Wankar A.K., Rindhe S.N., Doijad N.S. (2021). Heat stress in dairy animals and current milk production trends, economics, and future perspectives: the global scenario. Trop. Anim. Health Prod., 53: 70. Search in Google Scholar

Wodajo H.D., Gemeda B.A., Kinati W., Mulem A.A., van Eerdewijk A., Wieland B. (2020). Contribution of small ruminants to food security for Ethiopian smallholder farmers. Small Rumin. Res., 184: 106064. Search in Google Scholar

Wojtas K., Cwynar P., Kołacz R. (2014). Effect of thermal stress on physiological and blood parameters in Merino sheep. J. Vet. Res., 58: 283–288. Search in Google Scholar

Zhang M., Dunshea F.R., Warner R.D., DiGiacomo K., Osei-Amponsah R., Chauhan S.S. (2020). Impacts of heat stress on meat quality and strategies for amelioration: A review. Int. J. Biometeorol., 64: 1613–1628. Search in Google Scholar

Zhang S., Zhang Y., Wei Y., Zou J., Yang B., Wang Q., Jiang Q. (2024). Effect of heat stress on growth performance, carcase characteristics, meat quality and rumen-muscle axis of Hu sheep. Ital. J. Anim. Sci., 23: 87–100. Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Scienze biologiche, Biotecnologia, Zoologia, Medicina, Medicina veterinaria