[Abd El-Hack M.E., Kamal M., Altaie H.A., Youssef I.M., Algarni E.H., Almohmadi N.H., Swelum A.A. (2023). Peppermint essential oil and its nano-emulsion: Potential against aflatoxigenic fungus Aspergillus flavus in food and feed. Toxicon, 234: 107309.]Search in Google Scholar
[Abd El-Hakim Y.M., Al-Sagheer A.A., Khafaga A.F., Batiha G.E., Arif M., Abd El-Hack M.E. (2021). Nigella sativa supplementation in ruminant diets: production, health, and environmental perspectives. In: Black cumin (Nigella sativa) seeds: Chemistry, Technology, Functionality, and Applications. Springer, pp. 245–264.]Search in Google Scholar
[Abd El-Rahman H.H., Abedo A.A., El-Nomeary Y.A.A., Abdel-Magid S.S., Mohamed M.I. (2014). Effect of biological treatments of rice straw on growth performance, digestion and economic efficiency for growing calves. Glob. Vet., 13: 47–54.]Search in Google Scholar
[Abdel-Aziz N.A., Salem A.Z., El-Adawy M.M., Camacho L.M., Kholif A.E., Elghandour M.M., Borhami B.E. (2015). Biological treatments to improve feed utilization in agriculture animals – an overview. J. Integ. Agric., 14: 534–543.]Search in Google Scholar
[Abdelnour S.A., Abd El-Hack M.E., Khafaga A.F., Arif M., Taha A.E., Noreldin A.E. (2019). Stress biomarkers and proteomics alteration to thermal stress in ruminants: A review. J. Therm. Biol., 79: 120–134.]Search in Google Scholar
[Abid K., Jabri J., Yaich H., Malek A., Rekhis J., Kamoun M. (2023). Improving the nutritional value and rumen fermentation characteristics of sesame seed coats through a bioconversion approach using exogenous fibrolytic enzymes produced by Trichoderma longibrachiatum. Biomass Convers. Biorefin., 13: 14917–14925.]Search in Google Scholar
[Adesogan A.T., Arriola K.G., Jiang Y., Oyebade A., Paula E.M., Pech-Cervantes A.A., Vyas D. (2019). Symposium review: Technologies for improving fiber utilization. J. Dairy Sci., 102: 5726–5755.]Search in Google Scholar
[Ahamed M.S., Sultan M., Shamshiri R.R., Rahman M.M., Aleem M., Balasundram S.K. (2023). Present status and challenges of fodder production in controlled environments: a review. Smart Agri. Tech., 3: 100080.]Search in Google Scholar
[Ainsworth E.A., Lemonnier P., Wedow J.M. (2020). The influence of rising tropospheric carbon dioxide and ozone on plant productivity. Plant Biol., 22: 5–11.]Search in Google Scholar
[Alagawany M., Abd El-Hack M.E., Farag M.R., Shaheen H.M., Abdel-Latif M.A., Noreldin A.E., Khafaga A.F. (2020). The applications of and its derivatives in human, ruminant and fish nutrition – a review. Ann. Anim. Sci., 20: 389–407.]Search in Google Scholar
[Alemayehu M., Gezahagn K., Fekede F., Getnet A. (2017). Overview of improved forage and forage seed production in Ethiopia: lessons from fourth livestock development project. IJAB, 6: 217–226.]Search in Google Scholar
[Alsersy H., Salem A.Z., Borhami B.E., Olivares J., Gado H.M., Mariezcurrena M.D., Hernandez S.R. (2015). Effect of Mediterranean saltbush (Atriplex halimus) ensilaging with two developed enzyme cocktails on feed intake, nutrient digestibility, and ruminal fermentation in sheep. Anim. Sci. J., 86: 51–58.]Search in Google Scholar
[Aquino D., Del Barrio A., Trach N.X., Hai N.T., Khang D.N., Toan N.T., Van Hung N. (2020). Rice straw-based fodder for ruminants. In: Sustainable rice straw management. Springer Open, pp. 111–129.]Search in Google Scholar
[Aquino D.L., Fujihara T., Baltazar H., Santos J. (2016). Community-based S & T farm project on the preparation and utilization of urea-treated rice straw (UTRS) as fodder for dairy buffaloes. Proc. PCC R & D review of completed and ongoing research projects.]Search in Google Scholar
[Arsène M.M., Davares A.K., Andreevna S.L., Vladimirovich E.A., Carime B.Z., Marouf R., Khelifi I. (2021). The use of probiotics in animal feeding for safe production and as potential alternatives to antibiotics. Vet. World., 14: 319.]Search in Google Scholar
[Asmare B. (2020). Biological treatment of crop residues as an option for feed improvement in the tropics: a review. Anim. Husb. Dairy Vet. Sci., 4: 1–6.]Search in Google Scholar
[Assefa G., Bezabih M., Mekonnen K., Adie A., Gebreyes M., Seifu H. (2022). Crop residue management and nutritional improvement practices. AICCRA.]Search in Google Scholar
[Augustine D.J., Blumenthal D.M., Springer T.L., LeCain D.R., Gunter S.A., Derner J.D. (2018). Elevated CO2 induces substantial and persistent declines in forage quality irrespective of warming in mixed-grass prairie. Ecol. Appl., 28: 721–735.]Search in Google Scholar
[Ayyat M.S., Al-Sagheer A., Noreldin A.E., Abd El-Hack M.E., Khafaga A.F., Abdel-Latif M.A., Salem A.Z. (2021). Beneficial effects of rumen-protected methionine on nitrogen-use efficiency, histo-logical parameters, productivity and reproductive performance of ruminants. Anim. Biotechnol., 32: 51–66.]Search in Google Scholar
[Bachmann M., Martens S.D., Le Brech Y., Kervern G., Bayreuther R., Steinhöfel O., Zeyner A. (2022). Physicochemical characterization of barley straw treated with sodium hydroxide or urea and its digestibility and in vitro fermentability in ruminants. Sci. Rep., 12: 20530.]Search in Google Scholar
[Balehegn M., Eik L.O., Tesfay Y. (2014). Replacing commercial concentrate with Ficus thonningii improved the productivity of goats in Ethiopia. Trop. Anim. Health Prod., 46: 889–894.]Search in Google Scholar
[Banda L.J., Tanganyika J. (2021). Livestock provide more than food in smallholder production systems of developing countries. Anim. Front., 11: 7–14.]Search in Google Scholar
[Bandara N., Chalamaiah M. (2019). Bioactives from agricultural processing by-products. Encyclopedia of Food Chemistry, https://doi.org/10.1016/B978-0-08-100596-5.22408-6]Search in Google Scholar
[Bayissa T., Dugumaa B., Desalegn K. (2022). Chemical composition of major livestock feed resources in the medium and low agroecological zones in the mixed farming system of Haru District, Ethiopia. Heliyon, 8.]Search in Google Scholar
[Bocquier F., González-García E. (2010). Sustainability of ruminant agriculture in the new context: feeding strategies and features of animal adaptability into the necessary holistic approach. Animal, 4: 1258–1273.]Search in Google Scholar
[Boga M., Ayasan T. (2022). Determination of nutritional value of alfalfa varieties and lines by using the in vitro method and gas production technique. J. Hell. Vet. Med. Soc., 73: 3613–3620.]Search in Google Scholar
[Bogale S., Melaku S., Yami A. (2008). Potential use of crop residues as livestock feed resources under smallholder farmers’ conditions in Bale highlands of Ethiopia. Trop. Subtrop. Agroecosyst., 8: 107–114.]Search in Google Scholar
[Buranov A.U., Mazza G. (2008). Lignin in the straw of herbaceous crops. Ind. Crop. Prod., 28: 237–259.]Search in Google Scholar
[Cardoso K.B.B., Nascimento M.C., Batista A.C., de Melo Oliveira V., Nascimento T.P., da Silva Batista J.M., Porto A.L.F. (2022). Systematic analysis on the obtaining of fibrinolytic fungi enzymes. Res. Soc. Dev., 11: e13611225449–e13611225449.]Search in Google Scholar
[Chen J., Gong Y., Wang S., Guan B., Balkovic J., Kraxner F. (2019). To burn or retain crop residues on croplands? An integrated analysis of crop residue management in China. Sci. Total Environ., 662: 141–150.]Search in Google Scholar
[Collins M., Moore K.J., Nelson C.J., Barnes R.F. (2017). Preservation of forage as hay and silage. Forages, 1: 321.]Search in Google Scholar
[de Oliveira I.L., Lima L.M., Casagrande D.R., Lara M.A.S., Bernardes T.F. (2017). Nutritional value of corn silage from intensive dairy farms in Brazil. Rev. Bras. Zootec., 46: 494–501.]Search in Google Scholar
[Duncan A.J., Bachewe F., Mekonnen K., Valbuena D., Rachier G., Lule D., Erenstein O. (2016). Crop residue allocation to livestock feed, soil improvement, and other uses along a productivity gradient in Eastern Africa. Agric. Ecosyst. Environ., 228: 101–110.]Search in Google Scholar
[EC (2003). Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition. Official Journal L 268:29. http://data.europa.eu/eli/reg/2003/1831/oj.]Search in Google Scholar
[EC (2012). Commission Implementing Regulation (EU) No 839/2012 of 18 September 2012 concerning the authorization of urea as a feed additive for ruminants. Official Journal of the European Union L252: 11, 2012. https://eur-lex.europa.eu/LexUriServ/Lex-UriServ.do? uri OJ: L: 2012:252:0011:0013: EN:PDF.]Search in Google Scholar
[EC (2021). European Union Register of Feed Additives. https://ec.europa.eu/food/safety/animal-feed/feed-additives/eu-register_en.]Search in Google Scholar
[Ederer P., Baltenweck I., Blignaut J.N., Moretti C., Tarawali S. (2023). Affordability of meat for global consumers and the need to sustain investment capacity for livestock farmers. Anim. Front., 13: 45–60.]Search in Google Scholar
[El-Bordeny N.E., Abdou A., Badr A.M., Madkour M.A. (2015). The productive and physiological response of ewe-lambs fed a ration containing bio-upgraded rice straw. Asian J. Anim. Vet. Adv., 10: 237–246.]Search in Google Scholar
[Elghandour M.M., Chagoyán J.C.V., Salem A.Z., Kholif A.E., Castañeda J.S.M., Camacho L.M., Cerrillo-Soto M.A. (2014). Effects of Saccharomyces cerevisiae at direct addition or pre-incubation on in vitro gas production kinetics and degradability of four fibrous feeds. Ital. J. Anim. Sci., 13: 3075.]Search in Google Scholar
[El Ghobashy H., Shaban Y., Okasha M., Abd El-Reheem S., Abdelgawad M., Ibrahim R., Khater E.S. (2023). Development and evaluation of a dual-purpose machine for chopping and crushing forage crops. Heliyon, 9.]Search in Google Scholar
[El-Ratel I.T., Amara M.M., Beshara M.M., El Basuini M.F., Fouda S.F., El-Kholy K.H., Mekawy A. (2024). Effects of supplemental vitamin A on reproduction and antioxidative status of aged laying hens, and growth, blood indices and immunity of their offspring. Poult. Sci., 103: 103453.]Search in Google Scholar
[Elseed A.F. (2005). Effect of supplemental protein feeding frequency on ruminal characteristics and microbial N production in sheep fed treated rice straw. Small Rumin. Res., 57: 11–17.]Search in Google Scholar
[Erenstein O., Thorpe W. (2011). Livelihoods and agro-ecological gradients: A meso-level analysis in the Indo-Gangetic Plains, India. Agric. Syst., 104: 42–53.]Search in Google Scholar
[Ethiopia F.A.O. (2018). Report on feed inventory and feed balance. FAO: Rome, Italy.]Search in Google Scholar
[FAO (2022). FAOSTAT Statistical database.]Search in Google Scholar
[Faostat (2019). Food and Agriculture Organization of the United Nations – Statistic Division https://www.fao.org/faostat/en/#data.]Search in Google Scholar
[Faostat (2021). Domain crop residues. Available online: (https://fenix-services.fao.org/faostat/static/documents/GA/GA_e.pdf).]Search in Google Scholar
[Flachowsky G. (1987). Physikalische, chemische und biologische Methoden der Strohaufbereitung und Möglichkeiten der praktischen Nutzung [Physical, chemical and biological methods of straw treatment and options for their practical application]. Wissenschaftliche Zeitschrift der Karl-Marx-Universität Leipzig, 36: 232–247.]Search in Google Scholar
[Gabriel O.S., Fajemisin A.N., Onyekachi D.E. (2018). Nutritional digestibility, nitrogen balance, and blood profile of West African Dwarf (Wad) goats fed cassava peels with urea-molasses multi-nutrient block (UMMB) supplements. Asian Res. J. Agric., 9: 1–11.]Search in Google Scholar
[Gado H.M., Salem A.Z.M., Camacho L.M., Elghandour M.M.Y., Salazar M.C. (2013). Influence of exogenous enzymes on in vitro ruminal degradation of ensiled rice straw with DDGS. Anim. Nutr. Feed Technol., 13: 569–574.]Search in Google Scholar
[Garg M.R., Sherasia P.L., Bhanderi B.M., Phondba B.T., Shelke S.K., Makkar H.P.S. (2013). Effects of feeding nutritionally balanced rations on animal productivity, feed conversion efficiency, feed nitrogen use efficiency, rumen microbial protein supply, parasitic load, immunity, and enteric methane emissions of milking animals under field conditions. Anim. Feed Sci. Technol., 179: 24–35.]Search in Google Scholar
[Gauder M., Graeff-Hönninger S., Claupein W. (2011). Identifying the regional straw potential for energetic use based on statistical information. Biomass Bioenergy, 35: 1646–1654.]Search in Google Scholar
[Gelayenew B., Nurfeta A., Assefa G., Asebe G. (2016). Assessment of livestock feed resources in the farming systems of mixed and shifting cultivation, Gambella Regional State, Southwestern Ethiopia. GJSFR, 16.]Search in Google Scholar
[Godde C.M., Boone R.B., Ash A.J., Waha K., Sloat L.L., Thornton P.K., Herrero M. (2020). Global rangeland production systems and livelihoods are at threat under climate change and variability. Environ. Res. Lett., 15: 044021.]Search in Google Scholar
[Godde C.M., Mason-D’Croz D., Mayberry D.E., Thornton P.K., Herrero M. (2021). Impacts of climate change on the livestock food supply chain; a review of the evidence. Glob Food Secur-Agr., 28: 100488.]Search in Google Scholar
[Grzyb A., Wolna-Maruwka A., Niewiadomska A. (2020). Environmental factors affecting the mineralization of crop residues. Agronomy, 10: 1951.]Search in Google Scholar
[Gul M., Tekce E.J.A.N., Diseases N. (2017). Organic acids: Organic acids and their use in Animal Nutrition. Anim. Nutr. Nutrition. Dis., 3: 57–63.]Search in Google Scholar
[Haileslassie A., Blümmel M., Wani S.P., Sahrawat K.L., Pardhasaradhi G., Samireddypalle A. (2013). Extractable soil nutrient effects on feed quality traits of crop residues in the semiarid rainfed mixed crop-livestock farming systems of Southern India. Environ. Dev. Sustain., 15: 723–741.]Search in Google Scholar
[Hamed A.H.M., Elimam M.E. (2009). Effects of chopping on utilization of sorghum stover by Nubian goats. Pak. J. Nutr., 8: 1567–1569.]Search in Google Scholar
[Hänsel S., Ustrnul Z., Łupikasza E., Skalak P. (2019). Assessing seasonal drought variations and trends over Central Europe. Adv. Water Res., 127: 53–75.]Search in Google Scholar
[Hansen S., Clay S.A., Clay D.E., Carlson C.G., Reicks G., Jarachi Y., Horvath D. (2013). Landscape features impact on soil available water, corn biomass, and gene expression during the late vegetative stage. Plant Genome, 6: 1–9.]Search in Google Scholar
[Harun S., Geok S.K. (2016). Effect of sodium hydroxide pretreatment on rice straw composition. Indian J. Sci. Technol., 9: 1–9. Herrero M., Thornton P.K., Notenbaert A.M., Wood S., Msangi S.,]Search in Google Scholar
[Freeman H.A., Rosegrant M. (2010). Smart investments in sustainable food production: Revisiting mixed crop-livestock systems. Science, 327: 822–825.]Search in Google Scholar
[Hou Z., Liu J., Cai M., Liu Y., Zhang M., Wang L., Huang B. (2023). The volatile organic compounds and palatability of mixed ensilage of marigold (Tagetes erecta L.) crop residues. Sci. Rep., 13: 2080.]Search in Google Scholar
[Hwang J., Jeong H., Yoe H. (2011). Design and implementation of a smartphone application for effective livestock farm management. Proc. International Conference on Technology Systems and Management, pp. 285–290.]Search in Google Scholar
[Izadbakhsh M.H., Hashemzadeh F., Alikhani M., Ghorbani G.R., Khorvash M., Heidari M., Ahmadi F. (2024). Effects of dietary fiber level and forage particle size on growth, nutrient digestion, ruminal fermentation, and behavior of weaned Holstein calves under heat stress. Animals, 14: 275.]Search in Google Scholar
[Johnson J.M.F. (2019). A “Soil Lorax” perspective on corn stover for advanced biofuels. Agron. J., 111: 59–62.]Search in Google Scholar
[Jørgensen U., Jensen S.K., Ambye-Jensen M. (2022). Coupling the benefits of grassland crops and green biorefining to produce protein, materials, and services for the green transition. Grass Forage. Sci., 77: 295–306.]Search in Google Scholar
[Kamal M., Aljahdali N., Jaber F.A., Majrashi K.A., Kishk W.H., Khalil H.A., Abd El-Hack M.E. (2023 a). Influence of dietary chitosan supplementation on ovarian development and reproductive performance of New Zealand White rabbit does. Ann. Anim. Sci., 23: 757–764.]Search in Google Scholar
[Kamal M., Kishk W.H., Khalil H.A., Abdel-Khalek A.M., Ayoub M.A., Swelum A.A., Abd El-Hack M.E. (2023 b). Effect of dietary chitosan supplementation on productive and physiological performance parameters of growing New Zealand White rabbits. Int. J. Biol. Macromol., 230: 123166.]Search in Google Scholar
[Keba H.T., Madakadze I.C., Angassa A., Hassen A. (2013). Nutritional value of grasses in semi-arid rangelands of Ethiopia: Local experience-based herbage preference evaluation versus laboratory analysis. Asian-Austral. J. Anim. Sci., 26: 366.]Search in Google Scholar
[Kebede G., Assefa G., Feyissa F., Mengistu A. (2016). Forage legumes in crop-livestock mixed farming systems: A review. Int. J. Livest. Res., 6: 1–18.]Search in Google Scholar
[Keller F.A., Hamilton J.E., Nguyen Q.A. (2003). Microbial pretreatment of biomass: potential for reducing the severity of thermochemical biomass pretreatment. In: Biotechnology for Fuels and Chemicals: The Twenty-Fourth Symposium. Humana Press, pp. 27–41.]Search in Google Scholar
[Khattab H.M., Gado H.M., Kholif A.E., Mansour A.M., Kholif A.M. (2011). The potential of feeding goats sun-dried rumen contents with or without bacterial inoculums to replace berseem clover and the effects on milk production and animal health.]Search in Google Scholar
[Khattab H.M., Gado H.M., Salem A.Z.M., Camacho L.M., El-Sayed M.M., Kholif A.M., Kholif, A.E. (2013). Chemical composition and in vitro digestibility of Pleurotus ostreatus spent rice straw. Anim. Nutr. Feed Technol., 13: 507–516.]Search in Google Scholar
[Kholif A.E. (2013). Utilization of exogenous enzyme treated rumen contents in goat rations. LAP LAMBERT Academic Publishing, Saarbrücken, Germany.]Search in Google Scholar
[Kholif A.E., Khattab H.M., El-Shewy A.A., Salem A.Z.M., Kholif A.M., El-Sayed M.M., Mariezcurrena M.D. (2014). Nutrient digestibility, ruminal fermentation activities, serum parameters, and milk production and composition of lactating goats fed diets containing rice straw treated with Pleurotus ostreatus. Asian Austral. J. Anim., 27: 357.]Search in Google Scholar
[Kidanemariam F., Fesseha H. (2020). Assessment on livestock production: Opportunities and challenges to livestock household in Welkayt District. Education, 7: 19–8.]Search in Google Scholar
[Koike S., Kobayashi Y. (2009). Fibrolytic rumen bacteria: their ecology and functions. Asian-Australas J. Anim. Sci., 22: 131–138.]Search in Google Scholar
[Kulkarni N.A., Chethan H.S., Srivastava R., Gabbur A.B. (2022). Role of probiotics in ruminant nutrition as natural modulators of health and productivity of animals in tropical countries: an overview. Trop. Anim. Health Prod., 54: 110.]Search in Google Scholar
[Kumar M., Chatterjee A., Dutta T.K., Reena Y., Mohammad A., Bhakat C., Karunakaran M. (2023 a). Effect of exogenous fibrolytic enzymes supplementation on voluntary intake, availability of nutrients and growth performance in Black Bengal kids (Capra hircus). Small Rumin. Res., 220: 106912.]Search in Google Scholar
[Kumar N., Upadhyay G., Chhetri K.B., Harsha B.R., Malik G.K., Kumar R., Gill S.C. (2023 b). Pre- and post-harvest management of wheat for improving productivity, quality, and resource utilization efficiency. In: Wheat Science. CRC Press, pp. 57–106.]Search in Google Scholar
[Lamega S., Klinck L., Komainda M., Odhiambo J., Ayisi K., Isselstein J. (2024). Feed gaps among cattle keepers in semiarid and arid southern African regions: A case study in the Limpopo Province, South Africa. In: Sustainability of Southern African Ecosystems under Global Change, von Maltitz G.P., Midgley G.F., Veitch J., Brümmer C., Rötter R.P., Viehberg F.A., Vesteet M. (eds). Ecological Studies, 248. Springer, Cham.]Search in Google Scholar
[Lankiewicz T.S., Choudhary H., Gao Y., Amer B., Lillington S.P., Leggieri P.A., O’Malley M.A. (2023). Lignin deconstruction by anaerobic fungi. Nat. Microbiol., 8: 596–610.]Search in Google Scholar
[Latif W., Ciniglia C., Iovinella M., Shafiq M., Papa S. (2023). Role of white rot fungi in industrial wastewater treatment: a review. Appl. Sci., 13: 8318.]Search in Google Scholar
[Lee H.V., Hamid S.B.A., Zain S.K. (2014). Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci. World J., 2014.]Search in Google Scholar
[Lenné J.M., Fernandez-Rivera S., Blümmel M. (2003). Approaches to improve the utilization of food-feed crops – synthesis. Field Crops Res., 84: 213–222.]Search in Google Scholar
[Li J., Shen Y., Cai Y. (2010). Improvement of fermentation quality of rice straw silage by application of a bacterial inoculant and glucose. Asian Austral. J. Anim., 23: 901–906.]Search in Google Scholar
[Liu J.J., Liu X.P., Ren J.W., Zhao H.Y., Yuan X.F., Wang X.F., Cui Z.J. (2015). The effects of fermentation and adsorption using lactic acid bacteria culture broth on the feed quality of rice straw. J. Integr. Agric., 14: 503–513.]Search in Google Scholar
[López S., Davies D.R., Giraldez F.J., Dhanoa M.S., Dijkstra J., France J. (2005). Assessment of nutritive value of cereal and legume straws based on chemical composition and in vitro digestibility. J. Sci. Food Agric., 85: 1550–1557.]Search in Google Scholar
[Lorenz R., Stalhandske Z., Fischer E.M. (2019). Detection of climate change signal in extreme heat, heat stress, and cold in Europe from observations. Geophys. Res. Lett., 46: 8363–74.]Search in Google Scholar
[Lukuyu B.A., Gachuiri C.K., Lukuyu M.N., Lusweti C., Mwendia S.W. (2012). Feeding dairy cattle in East Africa. East Africa Dairy Development Project.]Search in Google Scholar
[Ma Y., Chen X., Zahoor Khan M., Xiao J., Liu S., Wang J., Cao Z. (2020). The impact of ammoniation treatment on the chemical composition and in vitro digestibility of rice straw in Chinese Holsteins. Animals, 10: 1854.]Search in Google Scholar
[Magnan N., Larson D.M., Taylor J.E. (2012). Stuck on stubble? The non-market value of agricultural byproducts for diversified farmers in Morocco. Am. J. Agric. Econ., 94: 1055–1069.]Search in Google Scholar
[Mahesh M.S., Mohini M. (2013). Biological treatment of crop residues for ruminant feeding: A review. Afr. J. Biotechnol., 12.]Search in Google Scholar
[Makkar H.P. (2016). Smart livestock feeding strategies for harvesting triple gain – the desired outcomes in the planet, people, and profit dimensions: a developing country perspective. Anim. Prod. Sci., 56: 519–534.]Search in Google Scholar
[Makkar H.P., Sánchez M., Speedy A.W. (2007). Editors. Feed supplementation blocks: urea-molasses multi-nutrient blocks: simple and effective feed supplement technology for ruminant agriculture. Food and Agriculture Org. 164.]Search in Google Scholar
[Makkar H.P.S., Addonizio E., Gizachew L. (2018). Characterization of feeding systems in Ethiopia with a focus on dry areas. Broadening Horizons, 51: 1–9.]Search in Google Scholar
[Martens S., Wildner V., Schulze J., Richardt W., Greef J.M., Zeyner A., Steinhöfel O. (2022). Chemical treatment of straw for ruminant feeding with NaOH or urea – investigative steps via a practical application under current European Union conditions. Agric. Food Sci., 31: 260–281.]Search in Google Scholar
[Masud M.T., Bhowmik S. (2018). Feasibility study of solar-powered hydroponic fodder machine in Bangladesh. Renewable Energy in Developing Countries: Local Development and Techno-Economic Aspects, pp. 85–94.]Search in Google Scholar
[Melanouri E.M., Dedousi M., Diamantopoulou P. (2022). Cultivating Pleurotus ostreatus and Pleurotus eryngii mushroom strains on agro-industrial residues in solid-state fermentation. Part I: Screening for growth, endoglucanase, laccase, and biomass production in the colonization phase. Carbon Resour. Convers., 5: 61–70.]Search in Google Scholar
[Mengistu A., Kebede G., Feyissa F., Assefa G. (2017). Review on major feed resources in Ethiopia: Conditions, challenges, and opportunities. ARJASR, 5: 176–185.]Search in Google Scholar
[Modroño S., Soldado A., Martínez-Fernández A., de la Roza-Delgado B. (2017). Handheld NIRS sensors for routine compound feed quality control: Real-time analysis and field monitoring. Talanta, 162: 597–603.]Search in Google Scholar
[Mohamed L.A., Dosoky W.M., Kamal M., Alshehry G., Algarni E.H., Aldekhail N.M., Farag S.A. (2024). Growth performance, carcass traits, and meat physical characteristics of growing Japanese quail-fed ginger powder and frankincense oil as feed additives. Poult. Sci., 103: 103771.]Search in Google Scholar
[Mudzengi C.P., Taderera L.M., Tigere A., Kapembeza C.S., Moyana S., Zimondi M., Dahwa E. (2014). Adoption of urea treatment of maize stover technology for dry season supplementation of cattle in Wedza, Zimbabwe. Livest. Res. Rural Dev., 26: 1–8.]Search in Google Scholar
[Nurfitri N., Mangunwardoyo W., Saskiawan I. (2021). Lignocellulolytic enzyme activity pattern of three white oyster mushroom (Pleurotus ostreatus (Jacq.) P. Kumm.) strains during mycelial growth and fruiting body development. J. Phys. Conf. Series, 1725: 012056.]Search in Google Scholar
[Olafadehan O.A. (2013). Feeding value of Pterocarpus erinaceus for growing goats. Anim. Feed Sci. Technol., 185: 1–8.]Search in Google Scholar
[Olafadehan O.A., Okunade S.A. (2018). Fodder value of three browse forage species for growing goats. J. Saudi Soc. Agric. Sci., 17: 43–50.]Search in Google Scholar
[Olagunju L.K., Isikhuemhen O.S., Dele P.A., Anike F.N., Essick B.G., Holt N., Anele U.Y. (2023). Pleurotus ostreatus can significantly improve the nutritional value of lignocellulosic crop residues. Agriculture, 13: 1161.]Search in Google Scholar
[Omer H.A.A., Ali F.A.F., Gad S.M. (2012). Replacement of clover hay by biologically treated corn stalks in growing sheep rations. J. Agric. Sci., 4: 257.]Search in Google Scholar
[Ortolani I.R., Amanzougarene Z., Fondevila M. (2020). In vitro estimation of the effect of grinding on rumen fermentation of fibrous feeds. Animals, 10: 732.]Search in Google Scholar
[Owen E., Smith T., Makkar H. (2012). Successes and failures with animal nutrition practices and technologies in developing countries: A synthesis of an FAO e-conference. Anim. Feed Sci. Technol., 174: 211–226.]Search in Google Scholar
[Palangi V., Macit M. (2021). Indictable mitigation of methane emission using some organic acids as additives towards a cleaner ecosystem. Waste Biomass Valori., 12: 4825–4834.]Search in Google Scholar
[Palangi V., Macit M., Kılıç Ü. (2023). Effects of organic acid-treated legume forages on in-vitro degradability values. J. Hell. Vet. Med. Soc., 74.]Search in Google Scholar
[Pavlović M., Marković R., Radulović S., Teodorović V., Nikolić A., Jakić-Dimić D., Šefer D. (2016). The use of organic acids in animal nutrition. Proc: Second International Symposium of Veterinary Medicine, pp. 233–243.]Search in Google Scholar
[Pédèches R., Aubron C., Philippon O., Bainville S. (2023). An ecological reading of crop–livestock interactions – Gers, Southwestern France, 1950 to the present. Sustainability, 15: 10234.]Search in Google Scholar
[Peñuelas J., Ciais P., Canadell J.G., Janssens I.A., Fernández-Martínez M., Carnicer J., Sardans, J. (2017). Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol., 1: 1438–1445.]Search in Google Scholar
[Pourbayramian R., Abdi-Benemar H., Seifdavati J., Greiner R., Elghandour M.M.M.Y., Salem A.Z.M. (2021). Bioconversion of potato waste by rumen fluid from slaughterhouses to produce a potential feed additive rich in volatile fatty acids for farm animals. J. Clean. Prod., 280: 124411.]Search in Google Scholar
[Powell J.M., Pearson R.A., Hiernaux P.H. (2004). Crop–livestock interactions in the West African drylands. Agron. J., 96: 469–483.]Search in Google Scholar
[Reddy B.V.S., Reddy P.S., Bidinger F., Blümmel M. (2003). Crop management factors influencing yield and quality of crop residues. Field Crop. Res., 84: 57–77.]Search in Google Scholar
[Ren H., Wang C., Fan W., Zhang B., Li Z., Li D. (2018). Effects of formic or acetic acid on the storage quality of mixed air-dried corn stover and cabbage waste, and microbial community analysis. Food Technol. Biotechnol., 56: 71.]Search in Google Scholar
[Reshi P.A., Tabasum T., Ganai A.M., Ahmad H.A., Sheikh G.G., Beigh Y.A., Haq S.A. (2022). Use of urea-based multi-nutrient blocks for enhanced performance of dairy cattle – a review. Skuast J. Res., 24: 12–23.]Search in Google Scholar
[Salami S.A., Luciano G., O’Grady M.N., Biondi L., Newbold C.J., Kerry J.P., Priolo A. (2019). Sustainability of feeding plant byproducts: A review of the implications for ruminant meat production. Anim. Feed Sci. Technol., 251: 37–55.]Search in Google Scholar
[Salem A.Z.M., Alsersy H., Camacho L.M., El-Adawy M.M., Elghandour M.M.Y., Kholif A.E., Zaragoza A. (2015). Feed intake, nutrient digestibility, nitrogen utilization, and ruminal fermentation activities in sheep fed Atriplex halimus ensiled with three developed enzyme cocktails. Czech J. Anim. Sci., 60: 185–194.]Search in Google Scholar
[Sarnklong C., Cone J.W., Pellikaan W., Hendriks W.H. (2010). Utilization of rice straw and different treatments to improve its feed value for ruminants: a review. Asian Austral. J. Anim., 23: 680–692. Satiro L.S., Cherubin M.R., Lisboa I.P., de Souza Noia R., Cerri C.C.,]Search in Google Scholar
[Pellegrino Cerri C.E. (2019). Prediction of sugarcane yield by soil attributes under straw removal management. Agron. J., 111: 14–23.]Search in Google Scholar
[Schader C., Muller A., Scialabba N.E.H., Hecht J., Isensee A., Erb K.H., Niggli U. (2015). Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. J. R. Soc. Interface., 12: 20150891.]Search in Google Scholar
[Schiere J.B. (2010). Cereal straws as ruminant feeds: problems and prospects revisited. Anim. Nutr. Feed Technol., 10: 127–153. Schrobback P., Dennis G., Li Y., Mayberry D., Shaw A., Knight-Jones T.,]Search in Google Scholar
[Herrero M. (2023). Approximating the global economic (market) value of farmed animals. Glob. Food Secur., 39: 100722.]Search in Google Scholar
[Seifdavati J., Seifzadeh S., Ramezani M., Barzegar Mashak R., Seyedsharifi R., Elghandour M.M., Salem A.Z. (2021). Wastes valorization of wheat straw and wheat bran is treated with urea, probiotic, or organic acids to enhance ruminal gas production and digestibility of pumpkin by-product. Waste Biomass Valori., 1–11.]Search in Google Scholar
[Selemani I.S., Eik L.O. (2016). The effects of concentrate supplementation on growth performance and behavioral activities of cattle grazed on natural pasture. Trop. Anim. Health Prod., 48: 229–232.]Search in Google Scholar
[Seré C., Van der Zijpp A., Persley G., Rege E. (2008). Dynamics of livestock production systems, drivers of change and prospects for animal genetic resources. Anim. Genet. Res., 42: 3–24.]Search in Google Scholar
[Seresinhe T., Sujani S., Pathirana I. (2023). Exogenous fibrolytic enzymes: for the better utilization of guinea grass and rice straw as ruminant feeds. In: Exogenous Enzymes as Feed Additives in Ruminants. Cham: Springer International Publishing, pp. 63–76.]Search in Google Scholar
[Sharma R.K., Arora D.S. (2015). Fungal degradation of lignocellulosic residues: an aspect of improved nutritional quality. Crit. Rev. Microbiol., 41: 52–60.]Search in Google Scholar
[Shiferaw A. (2011). Estimating soil loss rates for soil conservation planning in the Borena Woreda of South Wollo Highlands, Ethiopia. JSDA, 13: 87–106.]Search in Google Scholar
[Shinde R., Shahi D.K., Mahapatra P., Singh C.S., Naik S.K., Thom-bare N., Singh A.K. (2022). Management of crop residues with special reference to the on-farm utilization methods: A review. Ind. Crops Prod., 181: 114772.]Search in Google Scholar
[Shrivastava B., Nandal P., Sharma A., Jain K.K., Khasa Y.P., Das T.K., Kuhad R.C. (2012). Solid state bioconversion of wheat straw into digestible and nutritive ruminant feed by Ganoderma sp. rckk02. Biores. Technol., 107: 347–351.]Search in Google Scholar
[Shyamsundar P., Springer N.P., Tallis H., Polasky S., Jat M.L., Sidhu H.S., Somanathan R. (2019). Fields on fire: Alternatives to crop residue burning in India. Science, 365: 536–538.]Search in Google Scholar
[Sijtsma R. (2013). Challenges and opportunities in animal feed and nutrition. Agric. Food Sci., 1: 1–9.]Search in Google Scholar
[Silva J.P., Ticona A.R., Hamann P.R., Quirino B.F., Noronha E.F. (2021). Deconstruction of lignin: from enzymes to microorganisms. Molecules, 26: 2299.]Search in Google Scholar
[Silverstein R.A., Chen Y., Sharma-Shivappa R.R., Boyette M.D., Osborne J. (2007). A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour. Technol., 98: 3000–3011.]Search in Google Scholar
[Sloat L.L., Gerber J.S., Samberg L.H., Smith W.K., Herrero M., Ferreira L.G., West, P.C. (2018). The increasing importance of precipitation variability on global livestock grazing lands. Nat. Clim. Change., 8: 214–218.]Search in Google Scholar
[Smith M.R., Myers S.S. (2018). Impact of anthropogenic CO2 emissions on global human nutrition. Nat. Clim. Change., 8: 834–839.]Search in Google Scholar
[Soares L.F.P., Guim A., De Mello A.C.L., de Andrade Ferreira M., De Carvalho F.F.R., de Lima Silva J., Neves M.L.M.W. (2023). Dwarf and tall elephant grass silages: intake, nutrient digestibility, nitrogen balance, ruminal fermentation, and ingestive behavior in sheep. Trop. Anim. Health Prod., 55: 93.]Search in Google Scholar
[Solazzo E., Crippa M., Guizzardi D., Muntean M., Choulga M., Janssens-Maenhout G. (2021). Uncertainties in the Emissions Database for Global Atmospheric Research (EDGAR) emission inventory of greenhouse gases. Atmos. Chem. Phys., 21: 5655–5683.]Search in Google Scholar
[Suharyono S., Sutanto H., Purwanti Y., Martanti M., Agus A., Ristianto U. (2014). The effect of urea molasses multi-nutrient and medicated block for beef cattle, beef and dairy cow. At. Indones., 40: 77–87.]Search in Google Scholar
[Sun J., Zhao G., Li M.M. (2023). Using nutritional strategies to mitigate ruminal methane emissions from ruminants. Front. Agric. Sci. Eng., 10: 390–402.]Search in Google Scholar
[SungChinTial R., Win T., Aung M., Aung A., San Mu K., Kyawt Y.Y. (2023). Supplementing urea molasses mineral block improves growth performances and blood biochemical parameters of Mithun calves (Bos frontalis). Emerg. Anim. Spec., 9: 100036.]Search in Google Scholar
[Suryadi H., Judono J.J., Putri M.R., Eclessia A.D., Ulhaq J.M., Agus-tina D.N., Sumiati T. (2022). Biodelignification of lignocellulose using ligninolytic enzymes from white-rot fungi. Heliyon, 8.]Search in Google Scholar
[Tadesse G. (2014). Rumen manipulation for enhanced feed utilization and improved productivity performance of ruminants: a review. Momona Ethiop. J. Sci., 6: 3–17.]Search in Google Scholar
[Tang S., Tan Z., He Z. (2023). Dietary inclusion of exogenous fibrolytic enzyme to enhance fibrous feed utilization by goats and cattle in southern China. In: Exogenous Enzymes as Feed Additives in Ruminants. Cham: Springer International Publishing, pp. 151–195.]Search in Google Scholar
[Thornton P.K. (2010). Livestock production: recent trends, prospects. Philosophical Transactions of the Royal Society B: Biol. Sci., 365: 2853–2867.]Search in Google Scholar
[Titterton M., Bareeba F.B. (2000). Grass and legume silages in the tropics. FAO Plant Prod. Protect. Pap., pp. 43–50.]Search in Google Scholar
[Ugwoke B., Tieman R., Mill A., Denkenberger D., Pearce J.M. (2023). Quantifying alternative food potential of agricultural residue in rural communities of sub-Saharan Africa. Biomass., 3: 138–162.]Search in Google Scholar
[Uwineza C., Bouzarjomehr M., Parchami M., Sar T., Taherzadeh M. J., Mahboubi A. (2023). Evaluation of in vitro digestibility of Aspergillus oryzae fungal biomass grown on organic residue derived-VFAs as a promising ruminant feed supplement. J. Anim. Sci. Biotechnol., 14: 120.]Search in Google Scholar
[Valdes K.I., Salem A.Z.M., López S., Alonso M.U., Rivero N., Elghandour M.M.Y., Kholif A.E. (2015). Influence of exogenous enzymes in the presence of Salix babylonica extract on digestibility, microbial protein synthesis, and performance of lambs fed maize silage. J. Agric. Sci., 153: 732–742.]Search in Google Scholar
[Verardi A., Sangiorgio P., Blasi A., Lopresto C.G., Calabrò V. (2023). Bioconversion of crop residues using alternative fermentation-based approaches. Front. Biosci., Elite., 15: 17.]Search in Google Scholar
[Wang M., Yu Z., Wu Z., Hannaway D.B. (2018). Effect of Lactobacillus plantarum ‘KR107070’ and a propionic acid-based preservative on the fermentation characteristics, nutritional value, and aerobic stability of alfalfa-corn mixed silage ensiled with four ratios. Grassland Sci., 64: 51–60.]Search in Google Scholar
[Weimer P.J. (2022). Degradation of cellulose and hemicellulose by ruminal microorganisms. Microorganisms, 10: 2345.]Search in Google Scholar
[Yayneshet T., Eik L.O., Moe S.R. (2009). The effects of exclosures in restoring degraded semi-arid vegetation in communal grazing lands in northern Ethiopia. J. Arid Environ., 73: 542–549.]Search in Google Scholar
[Yoswathana N., Phuriphipat P., Treyawutthiwat P., Eshtiaghi M.N.J.E.R.J. (2010). Bioethanol production from rice straw. Energy Res. J., 1: 26–31.]Search in Google Scholar
[Young M.D., Ros G.H., de Vries W. (2021). Impacts of agronomic measures on crops, soil, and environmental indicators: A review and synthesis of meta-analysis. Agric. Ecosyst. Environ., 319: 107551.]Search in Google Scholar
[Yu H., Guo G., Zhang X., Yan K., Xu C. (2009). The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods. Bioresour. Technol., 100: 5170–5175.]Search in Google Scholar
[Zayed M.S. (2018). Enhancement of the feeding value of rice straw as animal fodder through microbial inoculants and physical treatments. Int. J. Recycl. Org. Waste Agric., 7: 117–124.]Search in Google Scholar
[Zhang X., Xu C., Wang H. (2007). Pretreatment of bamboo residues with Coriolus versicolor for enzymatic hydrolysis. J. Biosci. Bioeng., 104: 149–151.]Search in Google Scholar
[Zhang Z., Wang L., Li Q., Li F., Ma Z., Li F., Yang G. (2024). Effects of dietary forage neutral detergent fiber and rumen degradable starch ratios on chewing activity, ruminal fermentation, ruminal microbes and nutrient digestibility of Hu sheep fed a pelleted total mixed ration. J. Anim. Sci., 102: 100.]Search in Google Scholar
[Zhao C., Brissette F., Chen J., Martel J.L. (2020). Frequency change of future extreme summer meteorological and hydrological droughts over North America. J. Hydrol., 584: 124316.]Search in Google Scholar