[Abdel-Daim M.M., Eissa I.A., Abdeen A., Abdel-Latif H.M., Ismail M., Dawood M.A., Hassan A.M. (2019). Lycopene and resveratrol ameliorate zinc oxide nanoparticles-induced oxidative stress in Nile tilapia, Oreochromis niloticus. Environ. Toxicol. Pharmacol., 69: 44–50.]Search in Google Scholar
[Abdel-Tawwab M., Abdel-Rahman A.M., Ismael N.E. (2008). Evaluation of commercial live bakers’ yeast, Saccharomyces cerevisiae as a growth and immunity promoter for fry Nile tilapia, Oreochromis niloticus (L.) challenged in situ with Aeromonas hydrophila. Aquaculture, 280: 185–189.]Search in Google Scholar
[Ahmadifar E., Moghadam M.S., Dawood M.A., Hoseinifar S.H. (2019). Lactobacillus fermentum and/or ferulic acid improved the immune responses, antioxidative defence and resistance against Aeromonas hydrophila in common carp (Cyprinus carpio) finger-lings. Fish Shellfish Immunol., 94: 916–923.]Search in Google Scholar
[Ahmadifar E., Yousefi M., Karimi M., Fadaei Raieni R., Dadar M., Yilmaz S., Abdel-Latif, H.M. (2021 a). Benefits of dietary polyphenols and polyphenol-rich additives to aquatic animal health: an overview. Rev. Fish Sci. Aquacult., 29: 478–511.]Search in Google Scholar
[Ahmadifar E., Kalhor N., Dawood M.A., Ahmadifar M., Shahriari Moghadam M., Yousefi M. (2021 b). Effects of dietary p-coumaric acid on the growth performance, digestive enzyme activity, humoral immunity and immune-related gene expression in common carp, Cyprinus carpio. Aquacult. Nutr., 27: 747–756.]Search in Google Scholar
[Ahmadifar E., Mohammadzadeh S., Kalhor N., Salehi F., Eslami M., Zaretabar A., Moghadam M.S., Hoseinifar S.H., Van Doan, H. (2022 a). Effects of caffeic acid on the growth performance, growth genes, digestive enzyme activity, and serum immune parameters of beluga (Huso huso). J. Exp. Zool. A: Ecol. Integr. Physiol., 337: 715–723.]Search in Google Scholar
[Ahmadifar E., Mohammadzadeh S., Kalhor N., Yousefi M., Moghadam M.S., Naraballobh W., Ahmadifar M., Hoseinifar S.H., Van Doan, H. (2022 b). Cornelian cherry (Cornus mas L.) fruit extract improves growth performance, disease resistance, and serum immune-and antioxidant-related gene expression of common carp (Cyprinus carpio). Aquaculture, 558: 738372.]Search in Google Scholar
[Anal A.K., Koirala S., Karna A., Umar M., Thapa S.P. (2023). Immunomodulation and enhancing the immunity: Unveiling the potential of designer diets. Future Foods, 8: 100246.]Search in Google Scholar
[Armobin K., Ahmadifar E., Adineh H., Samani M.N., Kalhor N., Yilmaz S., Hoseinifar S.H., Van Doan, H. (2023). Quercetin application for common carp (Cyprinus carpio): I. Effects on growth performance, humoral immunity, antioxidant status, immune-related genes, and resistance against heat stress. Aquacult. Nutr., 2023: 1168262.]Search in Google Scholar
[Ashley P.J. (2007). Fish welfare: current issues in aquaculture. Appl. Anim. Behav. Sci., 104: 199–235.]Search in Google Scholar
[Augustin M.A., Sanguansri L., Lockett T. (2013). Nano- and micro-encapsulated systems for enhancing the delivery of resveratrol. Ann. N. Y. Acad. Sci., 1290: 107–112.]Search in Google Scholar
[Bishayee A. (2009). Cancer prevention and treatment with resveratrol: From rodent studies to clinical trials. Cancer Prev. Res., 2: 409–418.]Search in Google Scholar
[Bonaldo P., Sandri M. (2013). Cellular and molecular mechanisms of muscle atrophy. Dis. Model. Mech., 6: 25–39.]Search in Google Scholar
[Cao H., Pan X., Li C., Zhou C., Deng F., Li T. (2003). Density functional theory calculations for resveratrol. Bioorg. Med. Chem. Lett., 13: 1869–1871.]Search in Google Scholar
[Castro R., Lamas J., Morais P., Sanmartín M.L., Orallo F., Leiro J. (2008). Resveratrol modulates innate and inflammatory responses in fish leucocytes. Vet. Immunol. Immunopathol., 126: 9–19.]Search in Google Scholar
[Catalgol B., Batirel S., Taga Y., Ozer N.K. (2012). Resveratrol: French paradox revisited. Front. Pharmacol., 3: 141.]Search in Google Scholar
[Chalmers L., Vera L.M., Taylor J.F., Adams A., Migaud H. (2018). Comparative ploidy response to experimental hydrogen peroxide exposure in Atlantic salmon (Salmo salar). Fish Shellfish Immunol., 81: 354–367.]Search in Google Scholar
[Chen C., Xie B., Sun W., Gu Z., Huang J., Qi P., Liao Z., Zhang X., Yan X. (2023). Examination of the role of resveratrol in attenuating oxidative damage induced by starvation stress in the marine mussel, Mytilus coruscus, through regulation of the SIRT1-mediated signaling pathway. Aquaculture, 564: 739047.]Search in Google Scholar
[Chen C.Y., Jang J.H., Li M.H., Surh Y.J. (2005). Resveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells. Biochem. Biophys. Res. Commun., 331: 993–1000.]Search in Google Scholar
[Chen S., Zhao X., Ran L., Wan J., Wang X., Qin Y., Shu F., Gao Y., Yuan L., Zhang Q., Mi M. (2015). Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: a randomized controlled trial. Dig. Liv. Dis., 47: 226–232.]Search in Google Scholar
[Chen X., Lu J., An M., Ma Z., Zong H., Yang J. (2014). Anti-inflammatory effect of resveratrol on adjuvant arthritis rats with abnormal immunological function via the reduction of cyclooxygenase 2 and prostaglandin E2. Mol. Med. Rep., 9: 2592–2598.]Search in Google Scholar
[Chen Y.A., Zhang H., Ji S.L., Jia P.L., Chen Y.P., Li Y. (2021). Resveratrol and its derivative pterostilbene attenuate oxidative stress-induced intestinal injury by improving mitochondrial redox homeostasis and function via SIRT1 signaling. Free Radic. Biol. Med., 177: 1–14.]Search in Google Scholar
[Colica C., Milanović M., Milić N., Aiello V., Delorenzo A., Abenavoli L. (2018). A systematic review on natural antioxidant properties of resveratrol. Nat. Prod. Commun., 13: 1934578×1801300923.]Search in Google Scholar
[Cordova-Gomez M., Galano A., Raul J., Alvarez-Idaboy J.R. (2013). Piceatannol, a better peroxyl radical scavenger than resveratrol. RSC Adv., 3: 20209–20218.]Search in Google Scholar
[Dalmo R.A., Bøgwald J. (2008). β-glucans as conductors of immune symphonies. Fish Shellfish Immunol., 25: 384–396.]Search in Google Scholar
[Delmas D., Jannin B., Latruffe N. (2005). Resveratrol: Natural properties against atherosclerosis, associated proinflammatory effects and aging. Mol. Nutr. Food Res., 49: 377–395.]Search in Google Scholar
[Flippin J.L., Huggett D., Foran C.M. (2007). Changes in the timing of reproduction following chronic exposure to ibuprofen in Japanese medaka, Oryzias latipes. Aquat. Toxicol., 81: 73–78.]Search in Google Scholar
[Fukui M., Yamabe N., Kang K.S., Zhu B.T. (2010). Growth-stimula-tory effect of resveratrol in human cancer cells. Mol. Carcinog., 49: 750–759.]Search in Google Scholar
[Furne M., Holen E., Araujo P., Lie K., Moren M. (2013). Cytokine gene expression and prostaglandin production in head kidney leukocytes isolated from Atlantic cod (Gadus morhua) added different levels of arachidonic acid and eicosapentaenoic acid. Fish Shellfish Immunol., 34: 770–777.]Search in Google Scholar
[Galati G., O’Brien P.J. (2004). Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic. Biol. Med., 37: 287–303.]Search in Google Scholar
[Gambini J., Inglés M., Olaso G., Lopez-Grueso R., Bonet-Costa V., Gimeno-Mallench L., Mas-Bargues C., Abdelaziz K.M., Gomez-Cabrera M.C., Borras C. (2015). Properties of resveratrol: In vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid. Med. Cell Longev., 2015: 837042.]Search in Google Scholar
[Gantner B.N., Simmons R.M., Canavera S.J., Akira S., Underhill D.M. (2003). Collaborative induction of inflammatory responses by dectin-1 and toll-like receptor 2. J. Exp. Med., 197: 1107–1117. Gao J., Koshio S., Ishikawa M., Yokoyama S., Mamauag R.E.P.,]Search in Google Scholar
[Han Y. (2012). Effects of dietary oxidized fish oil with vitamin E supplementation on growth performance and reduction of lipid peroxidation in tissues and blood of red sea bream Pagrus major. Aquaculture, 356: 73–79.]Search in Google Scholar
[Ge Y., Zhang L., Chen W., Sun M., Liu W., Li X. (2023). Resveratrol modulates the redox response and bile acid metabolism to maintain the cholesterol homeostasis in fish Megalobrama amblycephala offered a high-carbohydrate diet. Antioxidants, 12: 121.]Search in Google Scholar
[Gerszon J., Rodacka A., Puchała M. (2014). Antioxidant properties of resveratrol and its protective effects in neurodegenerative diseases. Med. J. Cell Biol., 4: 97–117.]Search in Google Scholar
[Ghafarifarsani H., Nedaei S., Hoseinifar S.H., Van Doan H. (2023). Effect of different levels of chlorogenic acid on growth performance, immunological responses, antioxidant defense, and disease resistance of rainbow trout (Oncorhynchus mykiss) juveniles. Aqua-cult. Nutr., 2023: 3679002.]Search in Google Scholar
[Giordo R., Nasrallah G.K., Al-Jamal O., Paliogiannis P., Pintus G. (2020). Resveratrol inhibits oxidative stress and prevents mitochondrial damage induced by zinc oxide nanoparticles in zebrafish (Danio rerio). Int. J. Mol. Sci., 21: 3838.]Search in Google Scholar
[Giovannini C., Masella R. (2012). Role of polyphenols in cell death control. Nutr. Neurosci., 15: 134–149.]Search in Google Scholar
[Grau L., Soucek R., Pujol M.D. (2023). Resveratrol derivatives: Synthesis and their biological activities. Eur. J. Med. Chem., 246: 114962.]Search in Google Scholar
[Hata A.N., Breyer R.M. (2004). Pharmacology and signaling of pros-taglandin receptors: multiple roles in inflammation and immune modulation. Pharmacol. Ther., 103: 147–166.]Search in Google Scholar
[Hemmings B.A., Restuccia D.F. (2012). PI3K-PKB/Akt pathway. Cold Spring Harb. Perspect. Biol., 4: a011189.]Search in Google Scholar
[Herre J., Gordon S., Brown G.D. (2004). Dectin-1 and its role in the recognition of β-glucans by macrophages. Mol. Immunol., 40: 869–876.]Search in Google Scholar
[Hodnick W.F., Mllosavljević E.B., Nelson J.H., Pardini R.S. (1988). Electrochemistry of flavonoids: Relationships between redox potentials, inhibition of mitochondrial respiration, and production of oxygen radicals by flavonoids. Biochem. Pharmacol., 37: 2607–2611.]Search in Google Scholar
[Hsu C.N., Hou C.Y., Tain Y.L. (2021). Preventive aspects of early resveratrol supplementation in cardiovascular and kidney disease of developmental origins. Int. J. Mol. Sci., 22: 4210.]Search in Google Scholar
[Itami T., Takahashi Y., Nakamura Y. (1989). Efficacy of vaccination against vibriosis in cultured kuruma prawns Penaeus japonicus. J. Aquat. Anim. Health., 1: 238–242.]Search in Google Scholar
[Iuga C., Alvarez-Idaboy J.R., Russo N. (2012). Antioxidant activity of trans-resveratrol toward hydroxyl and hydroperoxyl radicals: A quantum chemical and computational kinetics study. J. Org. Chem., 77: 3868–3877.]Search in Google Scholar
[Jensen J.S., Wertz C.F., O’Neill V.A. (2010). Preformulation stability of trans-resveratrol and trans-resveratrol glucoside (piceid). J. Agric Food Chem., 58: 1685–1690.]Search in Google Scholar
[Jia E., Yan Y., Zhou M., Li X., Jiang G., Liu W., Zhang D. (2019 a). Combined effects of dietary quercetin and resveratrol on growth performance, antioxidant capability and innate immunity of blunt snout bream (Megalobrama amblycephala). Anim. Feed Sci. Technol., 256: 114268.]Search in Google Scholar
[Jia R., Li Y., Cao L., Du J., Zheng T., Qian H., Yin G. (2019 b). Antioxidative, anti-inflammatory and hepatoprotective effects of resveratrol on oxidative stress-induced liver damage in tilapia (Oreochromis niloticus). Com. Biochem. Physiol. C Toxicol. Pharmacol., 215: 56–66.]Search in Google Scholar
[Juan M.E., Gonzalez-Pons E., Munuera T., Ballester J., Rodriguez-Gil J.E., Planas J.M. (2005). Trans-resveratrol, a natural antioxidant from grapes, increases sperm output in healthy rats. J. Nutr., 135: 757–760.]Search in Google Scholar
[Kairisalo M., Bonomo A., Hyrskyluoto A., Mudò G., Belluardo N., Korhonen L., Lindholm D. (2011). Resveratrol reduces oxidative stress and cell death and increases mitochondrial antioxidants and XIAP in PC6.3-cells. Neurosci. Lett., 488: 263–266.]Search in Google Scholar
[Kao C.L., Chen L.K., Chang Y.L., Yung M.C., Hsu C.C., Chen Y.C. (2010). Resveratrol protects human endothelium from H2O2-induced oxidative stress and senescence via SIRT1 activation. J. Atheroscler. Throm., 17: 970–979.]Search in Google Scholar
[Kari Z.A., Téllez-Isaías G., Khoo M.I., Wee W., Kabir M.A., Cheadoloh R., Wei L.S. (2024). Resveratrol impacts on aquatic animals: a review. Fish Physiol. Biochem., 50: 1–12.]Search in Google Scholar
[Kasdallah-Grissa A., Mornagui B., Aouani E., Hammami M., May M., Gharbi N. (2007). Resveratrol, a red wine polyphenol, attenuates ethanol-induced oxidative stress in rat liver. Life Sci., 80: 1033–1039.]Search in Google Scholar
[Kaspar J.W., Niture S.K., Jaiswal A.K. (2009). Nrf2: Inrf2 (Keap1) signaling in oxidative stress. Free Radic. Biol. Med., 47: 1304–1309.]Search in Google Scholar
[Kavas G.O., Ayral P.A., Elhan A.H. (2013). The effects of resveratrol on oxidant/antioxidant systems and their cofactors in rats. Adv. Clin. Exp. Med., 22: 151–155.]Search in Google Scholar
[Khanjani M.H., Sharifinia M., Ghaedi G. (2022). β-glucan as a promising food additive and immunostimulant in aquaculture industry. Ann. Anim. Sci., 22: 817–827.]Search in Google Scholar
[Kincaid B., Bossy-Wetzel D (2013). Forever young: Sirt3 a shield against mitochondrial meltdown, aging, and neurodegeneration. Front. Aging Neurosci., 5: 48.]Search in Google Scholar
[Kitada M., Kume S., Imaizumi N., Koya D. (2011). Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway. Diabetes, 60: 634–643.]Search in Google Scholar
[Kopeć A., Piątkowska E., Leszczyńska T., Bieżanowska-Kopeć R. (2011). Health-promoting effects of resveratrol (in Polish). Żywn. Nauka Technol Jakość, 5: 5–15.]Search in Google Scholar
[Kowalska A., Siwicki A.K., Kowalski R.K. (2017). Dietary resveratrol improves immunity but reduces reproduction of broodstock medaka Oryzias latipes (Temminck & Schlegel). Fish Physiol. Biochem., 43: 27–37.]Search in Google Scholar
[Kristl J., Teskač K., Caddeo C., Abramović Z., Šentjurc M. (2009). Improvements of cellular stress response on resveratrol in liposomes. Eur. J. Pharm. Biopharm., 73: 253–259.]Search in Google Scholar
[Kumar S., Pandey A.K. (2013). Chemistry and biological activities of flavonoids: an overview. Sci. World J., 2013: 162750.]Search in Google Scholar
[Kung H.C., Lin K.J., Kung C.T., Lin T.K. (2021). Oxidative stress, mitochondrial dysfunction, and neuroprotection of polyphenols with respect to resveratrol in Parkinson’s disease. Biomedicines, 9: 918.]Search in Google Scholar
[Lam K., Cheung P. (2013). Non-digestible long chain beta-glucans as novel prebiotics. Bioact. Carbohydr. Diet Fibre, 2: 45–64. Latruffe N., Rifler J.P. (2013). Bioactive polyphenols from grapes and wine emphasized with resveratrol. Curr. Pharm. Des., 19: 6053–6063.]Search in Google Scholar
[Lee K.J., Dabrowski K. (2004). Long-term effects and interactions of dietary vitamin C and E on growth and reproduction of yellow perch, Perca flavescens. Aquaculture, 230: 377–389.]Search in Google Scholar
[Lee S.W., Najiah M., Wendy W., Nadirah M. (2009). Comparative study on antibiogram of Vibrio spp. isolated from diseased post larval and marketable-sized white leg shrimp (Litopenaeus vannamei). Front. Agric. China, 3: 446–451.]Search in Google Scholar
[León-González A.J., Auger C., Schini-Kerth V.B. (2015). Pro-oxidant activity of polyphenols and its implication on cancer chemoprevention and chemotherapy. Biochem. Pharmacol., 98: 371–380.]Search in Google Scholar
[Liang L., Tajmir-Riahi H.A., Subirade M. (2008). Interaction of β-lactoglobulin with resveratrol and its biological implications. Biomacromolecules, 9: 50–56.]Search in Google Scholar
[Liu H., Yang Z., Huang Y., Yang S., Huang Y., Cai S., Jian, J. (2021). Dietary resveratrol attenuates oxidative stress in Pacific white leg shrimp, Litopenaeus vannamei, in response to ammonia stress. Isr. J. Aquacult. Bamidgeh., 73: 1–10.]Search in Google Scholar
[Liu L., Gu L., Ma Q., Zhu D., Huang, X. (2013). Resveratrol attenuates hydrogen peroxide-induced apoptosis in human umbilical vein endothelial cells. Eur. Rev. Med. Pharmacol. Sci., 17: 88–94.]Search in Google Scholar
[Lopez-Nicolás J.M., Nuñez-Delicado E., Perez-Lopez A.J. (2006). Determination of stoichiometric coefficients and apparent formation constants for β-cyclodextrin complexes of trans-resveratrol using reversed-phase liquid chromatography J. Chromatogr. A, 1135: 158–165.]Search in Google Scholar
[Meena D., Das P., Kumar S., Mandal S., Prusty A., Singh S., Akhtar M., Behera B., Kumar K., Pal A. (2013). Beta-glucan: an ideal immunostimulant in aquaculture (a review). Fish Physiol. Biochem., 39: 431–457.]Search in Google Scholar
[Menoyo D., Kühn G., Ruiz-Lopez N., Pallauf K., Stubhaug I., Pastor J., Ipharraguerre I.R., Rimbach G. (2019). Dietary resveratrol impairs body weight gain due to reduction of feed intake without affecting fatty acid composition in Atlantic salmon. Animal, 13: 25–32.]Search in Google Scholar
[Mente E., Carter C.G., Barnes R.K., Karapanagiotidis I.T. (2011). Protein synthesis in wild-caught Norway lobster (Nephrops norvegicus L.). J. Exp. Mar. Biol. Ecol., 409: 208–214.]Search in Google Scholar
[Moustafa E.M., Dawood M.A., Assar D.H., Omar A.A., Elbialy Z.I., Farrag F.A., Shukry M., Zayed M.M. (2020). Modulatory effects of fenugreek seeds powder on the histopathology, oxidative status, and immune related gene expression in Nile tilapia (Oreochromis niloticus) infected with Aeromonas hydrophila. Aquaculture, 515: 734589.]Search in Google Scholar
[Naderi Farsani M., Meshkini S., Manaffar R. (2021). Growth performance, immune response, antioxidant capacity and disease resistance against Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss) as influenced through singular or combined consumption of resveratrol and two-strain probiotics. Aquacult. Nutr., 27: 2587–2599.]Search in Google Scholar
[Nawaz A., Irshad S., Hoseinifar S.H., Xiong H. (2018). The functionality of prebiotics as immunostimulant: Evidences from trials on terrestrial and aquatic animals. Fish Shellfish Immunol., 76: 272–278.]Search in Google Scholar
[Nimse S.B., Pal D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv., 5: 27986–28006.]Search in Google Scholar
[Nyström T. (2005). Role of oxidative carbonylation in protein quality control and senescence. EMBO J., 24: 1311–1317.]Search in Google Scholar
[Ognik K., Cholewińska E., Sembratowicz I., Grela E., Czech A. (2016). The potential of using plant antioxidants to stimulate antioxidant mechanisms in poultry. World’s Poult. Sci. J., 72: 291–298.]Search in Google Scholar
[Quincozes-Santos A., Gottfried C. (2011). Resveratrol modulates astroglial functions: Neuroprotective hypothesis. Ann. N. Y. Acad. Sci., 1215: 72–78.]Search in Google Scholar
[Rice-Evans C., Burdon R. (1993). Free radical-lipid interactions and their pathological consequences. Prog. Lipid Res., 32: 71–110.]Search in Google Scholar
[Robb E.L., Page M.M., Wiens B.E., Stuart J.A. (2008). Molecular mechanisms of oxidative stress resistance induced by resveratrol: Specific and progressive induction of MnSOD. Biochem. Biophys. Res. Commun., 367: 406–412.]Search in Google Scholar
[Rowe G.T., Boland G.S., Phoel W.C., Anderson R.F., Biscaye P.E. (1994). Deep-sea floor respiration as an indication of lateral input of biogenic detritus from continental margins. Deep Sea Res. Part II, 41: 657–668.]Search in Google Scholar
[Rowley A.F., Knight J., Lloyd-Evans P., Holland J.W, Vickers P.J. (1995). Eicosanoids and their role in immune modulation in fish – a brief overview. Fish Shellfish Immunol., 5: 549–567.]Search in Google Scholar
[Ryan M.J., Jackson J.R., Hao Y., Williamson C.L., Dabkowski E.R., Hollander J.M., Alway S.E. (2010). Suppression of oxidative stress by resveratrol after isometric contractions in gastrocnemius muscles of aged mice. J. Gerontol. A Biol. Sci. Med. Sci., 65: 815–831.]Search in Google Scholar
[Safari R., Hoseinifar S.H., Imanpour M.R., Mazandarani M., Sanchouli H., Paolucci M. (2020). Effects of dietary polyphenols on mucosal and humoral immune responses, antioxidant defense and growth gene expression in beluga sturgeon (Huso huso). Aquaculture, 528: 735494.]Search in Google Scholar
[Sahoo P., Kumari J., Mishra B. (2005). Non-specific immune responses in juveniles of Indian major carps. J. Appl. Ichthyol., 21: 151–155.]Search in Google Scholar
[Sakai M. (1999). Current research status of fish immunostimulants. Aquaculture, 172: 63–92.]Search in Google Scholar
[Sarhadi I., Alizadeh E., Ahmadifar E., Adineh H., Dawood M.A. (2020). Skin mucosal, serum immunity and antioxidant capacity of common carp (Cyprinus carpio) fed artemisia (Artemisia annua). Ann. Anim. Sci., 20: 1011–1027.]Search in Google Scholar
[Shahidi F., Ambigaipalan P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. J. Funct Foods, 18: 820–897.]Search in Google Scholar
[Sorrenti V., Benedetti F., Buriani A., Fortinguerra S., Caudullo G., Davinelli S., Zella D., Scapagnini G. (2022). Immunomodulatory and antiaging mechanisms of resveratrol, rapamycin, and metformin: Focus on mTOR and AMPK signaling networks. Pharmaceuticals, 15: 912.]Search in Google Scholar
[Soto-Rodriguez S.A, Gomez-Gil B., Lozano R. (2010). “Bright red” syndrome in Pacific white shrimp Litopenaeus vannamei is caused by Vibrio harveyi. Dis. Aquat. Organ., 92: 11–19.]Search in Google Scholar
[Spanier G., Xu H., Xia N., Tobias S., Deng S., Wojnowski L., Forster-mann U., Li H. (2009). Resveratrol reduces endothelial oxidative stress by modulating the gene expression of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPX1) and NADPH oxidase subunit (NOX4). J. Physiol. Pharm., 60: 111–116.]Search in Google Scholar
[Tan C., Zhou H., Wang X., Mai K., He G. (2019). Resveratrol attenuates oxidative stress and inflammatory response in turbot fed with soybean meal-based diet. Fish Shellfish Immunol., 91: 130–135.]Search in Google Scholar
[Tian J., Han G., Li Y., Zhao L., Wang G. (2021). Effects of resveratrol on growth, antioxidative status and immune response of snake-head fish (Channa argus). Aquacult. Nutr., 27: 1472–1481.]Search in Google Scholar
[Torno C., Staats S., de Pascual-Teresa S., Rimbach G., Schulz C. (2017). Fatty acid profile is modulated by dietary resveratrol in rainbow trout (Oncorhynchus mykiss). Mar. Drugs, 15: 252. Torno C., Staats S., Michl S.C., de Pascual-Teresa S., Izquierdo M.,]Search in Google Scholar
[Rimbach G., Schulz C. (2018). Fatty acid composition and fatty acid associated gene-expression in gilthead sea bream (Sparus aurata) are affected by low-fish oil diets, dietary resveratrol, and holding temperature. Mar. Drugs, 16: 379.]Search in Google Scholar
[Trela B.C., Waterhouse A.L. (1996). Resveratrol: Isomeric molar absorbivities and stability. J. Agric. Food Chem., 44: 1253–1257. Truong V.L., Jun M., Jeong W.S. (2018). Role of resveratrol in regulation of cellular defense systems against oxidative stress. BioFactors, 44: 36–49.]Search in Google Scholar
[Valenzano D.R., Terzibasi E., Genade T., Cattaneo A., Domenici L., Cellerino A. (2006). Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr. Biol., 16: 296–300.]Search in Google Scholar
[Vetvicka V., Vetvickova J. (2014). Anti-stress action of an orally-given combination of resveratrol, β-glucan, and vitamin C. Molecules, 19: 13724–13734.]Search in Google Scholar
[Vian M.A., Tomao V., Gallet S., Coulomb P.O., Lacombe J.M. (2005). Simple and rapid method for cis- and trans-resveratrol and piceid isomers determination in wine by high-performance liquid chromatography using chromolith columns. J. Chromatogr. A, 1085: 224–229.]Search in Google Scholar
[Wang X., Kim K.W., Bai S.C., Huh M.D., Cho B.Y. (2003). Effects of the different levels of dietary vitamin C on growth and tissue ascorbic acid changes in parrot fish (Oplegnathus fasciatus). Aquaculture, 215: 203–211.]Search in Google Scholar
[Wilson W.N., Baumgarner B.L., Watanabe W.O., Alam M.S., Kinsey, S. T. (2015). Effects of resveratrol on growth and skeletal muscle physiology of juvenile southern flounder. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 183: 27–35.]Search in Google Scholar
[Wu L., Chen Q., Dong B., Han D., Zhu X., Liu H., Yang Y., Xie S., Jin J. (2023). Resveratrol attenuated oxidative stress and inflammatory and mitochondrial dysfunction induced by acute ammonia exposure in gibel carp (Carassius gibelio). Ecotoxicol. Environ. Saf., 251: 114544.]Search in Google Scholar
[Xia L., Ding F., Zhu J.H., Fu G.S. (2011). Resveratrol attenuates apoptosis of pulmonary microvascular endothelial cells induced by high shear stress and proinflammatory factors. Human Cell., 24: 127–133.]Search in Google Scholar
[Xu Y., Nie L., Yin Y.G., Tang J.L., Zhou J.Y., Li D.D. (2012). Resveratrol protects against hyperglycemia-induced oxidative damage to mitochondria by activating SIRT1 in rat mesangial cells. Toxicol. Appl. Pharmacol., 259: 395–401.]Search in Google Scholar
[Yan Y.N., Xia S.L., Tian H.Y., Xu C., Jia E.T., Liu W.B., Zhang D.D. (2017). Effects of resveratrol supplementation on growth performance, immunity, antioxidant capability and disease resistance of blunt snout bream fed high-fat diet. Acta Hydrobiol. Sin., 41: 155–164.]Search in Google Scholar
[Ye W., Zheng Y., Sun Y., Li Q., Zhu H., Xu G. (2023). Transcriptome analysis of the response of four immune related organs of tilapia (Oreochromis niloticus) to the addition of resveratrol in feed. Fish Shellfish Immunol., 133: 108510.]Search in Google Scholar
[Zhang J., Dai X.F., Huang J.Y. (2012 a). Resveratrol binding to fibrinogen and its biological implication. Food Biophys., 7: 35–42. Zhang J., Mi Q., Shen M. (2012 b). Resveratrol binding to collagen and its biological implication. Food Chem., 131: 879–884.]Search in Google Scholar
[Zhao X., Guo Y., Ni P., Liu J., Wang F., Xing Z., Ye S. (2020). Resveratrol inhibits the virulence of Vibrio harveyi by reducing the activity of Vibrio harveyi hemolysin. Aquaculture, 522: 735086]Search in Google Scholar
[Zheng Y., Zhao Z., Wu W., Song C., Meng S., Fan L., Bing X., Chen, J. (2017). Effects of dietary resveratrol supplementation on hepatic and serum pro-/anti-inflammatory activity in juvenile GIFT tilapia, Oreochromis niloticus. Dev. Comp. Immunol., 73: 220–228.]Search in Google Scholar