Accesso libero

Exploring the Potential of Resveratrol as Feed Supplement in Aquaculture – A Review

,  e   
24 apr 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Abdel-Daim M.M., Eissa I.A., Abdeen A., Abdel-Latif H.M., Ismail M., Dawood M.A., Hassan A.M. (2019). Lycopene and resveratrol ameliorate zinc oxide nanoparticles-induced oxidative stress in Nile tilapia, Oreochromis niloticus. Environ. Toxicol. Pharmacol., 69: 44–50.Search in Google Scholar

Abdel-Tawwab M., Abdel-Rahman A.M., Ismael N.E. (2008). Evaluation of commercial live bakers’ yeast, Saccharomyces cerevisiae as a growth and immunity promoter for fry Nile tilapia, Oreochromis niloticus (L.) challenged in situ with Aeromonas hydrophila. Aquaculture, 280: 185–189.Search in Google Scholar

Ahmadifar E., Moghadam M.S., Dawood M.A., Hoseinifar S.H. (2019). Lactobacillus fermentum and/or ferulic acid improved the immune responses, antioxidative defence and resistance against Aeromonas hydrophila in common carp (Cyprinus carpio) finger-lings. Fish Shellfish Immunol., 94: 916–923.Search in Google Scholar

Ahmadifar E., Yousefi M., Karimi M., Fadaei Raieni R., Dadar M., Yilmaz S., Abdel-Latif, H.M. (2021 a). Benefits of dietary polyphenols and polyphenol-rich additives to aquatic animal health: an overview. Rev. Fish Sci. Aquacult., 29: 478–511.Search in Google Scholar

Ahmadifar E., Kalhor N., Dawood M.A., Ahmadifar M., Shahriari Moghadam M., Yousefi M. (2021 b). Effects of dietary p-coumaric acid on the growth performance, digestive enzyme activity, humoral immunity and immune-related gene expression in common carp, Cyprinus carpio. Aquacult. Nutr., 27: 747–756.Search in Google Scholar

Ahmadifar E., Mohammadzadeh S., Kalhor N., Salehi F., Eslami M., Zaretabar A., Moghadam M.S., Hoseinifar S.H., Van Doan, H. (2022 a). Effects of caffeic acid on the growth performance, growth genes, digestive enzyme activity, and serum immune parameters of beluga (Huso huso). J. Exp. Zool. A: Ecol. Integr. Physiol., 337: 715–723.Search in Google Scholar

Ahmadifar E., Mohammadzadeh S., Kalhor N., Yousefi M., Moghadam M.S., Naraballobh W., Ahmadifar M., Hoseinifar S.H., Van Doan, H. (2022 b). Cornelian cherry (Cornus mas L.) fruit extract improves growth performance, disease resistance, and serum immune-and antioxidant-related gene expression of common carp (Cyprinus carpio). Aquaculture, 558: 738372.Search in Google Scholar

Anal A.K., Koirala S., Karna A., Umar M., Thapa S.P. (2023). Immunomodulation and enhancing the immunity: Unveiling the potential of designer diets. Future Foods, 8: 100246.Search in Google Scholar

Armobin K., Ahmadifar E., Adineh H., Samani M.N., Kalhor N., Yilmaz S., Hoseinifar S.H., Van Doan, H. (2023). Quercetin application for common carp (Cyprinus carpio): I. Effects on growth performance, humoral immunity, antioxidant status, immune-related genes, and resistance against heat stress. Aquacult. Nutr., 2023: 1168262.Search in Google Scholar

Ashley P.J. (2007). Fish welfare: current issues in aquaculture. Appl. Anim. Behav. Sci., 104: 199–235.Search in Google Scholar

Augustin M.A., Sanguansri L., Lockett T. (2013). Nano- and micro-encapsulated systems for enhancing the delivery of resveratrol. Ann. N. Y. Acad. Sci., 1290: 107–112.Search in Google Scholar

Bishayee A. (2009). Cancer prevention and treatment with resveratrol: From rodent studies to clinical trials. Cancer Prev. Res., 2: 409–418.Search in Google Scholar

Bonaldo P., Sandri M. (2013). Cellular and molecular mechanisms of muscle atrophy. Dis. Model. Mech., 6: 25–39.Search in Google Scholar

Cao H., Pan X., Li C., Zhou C., Deng F., Li T. (2003). Density functional theory calculations for resveratrol. Bioorg. Med. Chem. Lett., 13: 1869–1871.Search in Google Scholar

Castro R., Lamas J., Morais P., Sanmartín M.L., Orallo F., Leiro J. (2008). Resveratrol modulates innate and inflammatory responses in fish leucocytes. Vet. Immunol. Immunopathol., 126: 9–19.Search in Google Scholar

Catalgol B., Batirel S., Taga Y., Ozer N.K. (2012). Resveratrol: French paradox revisited. Front. Pharmacol., 3: 141.Search in Google Scholar

Chalmers L., Vera L.M., Taylor J.F., Adams A., Migaud H. (2018). Comparative ploidy response to experimental hydrogen peroxide exposure in Atlantic salmon (Salmo salar). Fish Shellfish Immunol., 81: 354–367.Search in Google Scholar

Chen C., Xie B., Sun W., Gu Z., Huang J., Qi P., Liao Z., Zhang X., Yan X. (2023). Examination of the role of resveratrol in attenuating oxidative damage induced by starvation stress in the marine mussel, Mytilus coruscus, through regulation of the SIRT1-mediated signaling pathway. Aquaculture, 564: 739047.Search in Google Scholar

Chen C.Y., Jang J.H., Li M.H., Surh Y.J. (2005). Resveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells. Biochem. Biophys. Res. Commun., 331: 993–1000.Search in Google Scholar

Chen S., Zhao X., Ran L., Wan J., Wang X., Qin Y., Shu F., Gao Y., Yuan L., Zhang Q., Mi M. (2015). Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: a randomized controlled trial. Dig. Liv. Dis., 47: 226–232.Search in Google Scholar

Chen X., Lu J., An M., Ma Z., Zong H., Yang J. (2014). Anti-inflammatory effect of resveratrol on adjuvant arthritis rats with abnormal immunological function via the reduction of cyclooxygenase 2 and prostaglandin E2. Mol. Med. Rep., 9: 2592–2598.Search in Google Scholar

Chen Y.A., Zhang H., Ji S.L., Jia P.L., Chen Y.P., Li Y. (2021). Resveratrol and its derivative pterostilbene attenuate oxidative stress-induced intestinal injury by improving mitochondrial redox homeostasis and function via SIRT1 signaling. Free Radic. Biol. Med., 177: 1–14.Search in Google Scholar

Colica C., Milanović M., Milić N., Aiello V., Delorenzo A., Abenavoli L. (2018). A systematic review on natural antioxidant properties of resveratrol. Nat. Prod. Commun., 13: 1934578×1801300923.Search in Google Scholar

Cordova-Gomez M., Galano A., Raul J., Alvarez-Idaboy J.R. (2013). Piceatannol, a better peroxyl radical scavenger than resveratrol. RSC Adv., 3: 20209–20218.Search in Google Scholar

Dalmo R.A., Bøgwald J. (2008). β-glucans as conductors of immune symphonies. Fish Shellfish Immunol., 25: 384–396.Search in Google Scholar

Delmas D., Jannin B., Latruffe N. (2005). Resveratrol: Natural properties against atherosclerosis, associated proinflammatory effects and aging. Mol. Nutr. Food Res., 49: 377–395.Search in Google Scholar

Flippin J.L., Huggett D., Foran C.M. (2007). Changes in the timing of reproduction following chronic exposure to ibuprofen in Japanese medaka, Oryzias latipes. Aquat. Toxicol., 81: 73–78.Search in Google Scholar

Fukui M., Yamabe N., Kang K.S., Zhu B.T. (2010). Growth-stimula-tory effect of resveratrol in human cancer cells. Mol. Carcinog., 49: 750–759.Search in Google Scholar

Furne M., Holen E., Araujo P., Lie K., Moren M. (2013). Cytokine gene expression and prostaglandin production in head kidney leukocytes isolated from Atlantic cod (Gadus morhua) added different levels of arachidonic acid and eicosapentaenoic acid. Fish Shellfish Immunol., 34: 770–777.Search in Google Scholar

Galati G., O’Brien P.J. (2004). Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic. Biol. Med., 37: 287–303.Search in Google Scholar

Gambini J., Inglés M., Olaso G., Lopez-Grueso R., Bonet-Costa V., Gimeno-Mallench L., Mas-Bargues C., Abdelaziz K.M., Gomez-Cabrera M.C., Borras C. (2015). Properties of resveratrol: In vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid. Med. Cell Longev., 2015: 837042.Search in Google Scholar

Gantner B.N., Simmons R.M., Canavera S.J., Akira S., Underhill D.M. (2003). Collaborative induction of inflammatory responses by dectin-1 and toll-like receptor 2. J. Exp. Med., 197: 1107–1117. Gao J., Koshio S., Ishikawa M., Yokoyama S., Mamauag R.E.P.,Search in Google Scholar

Han Y. (2012). Effects of dietary oxidized fish oil with vitamin E supplementation on growth performance and reduction of lipid peroxidation in tissues and blood of red sea bream Pagrus major. Aquaculture, 356: 73–79.Search in Google Scholar

Ge Y., Zhang L., Chen W., Sun M., Liu W., Li X. (2023). Resveratrol modulates the redox response and bile acid metabolism to maintain the cholesterol homeostasis in fish Megalobrama amblycephala offered a high-carbohydrate diet. Antioxidants, 12: 121.Search in Google Scholar

Gerszon J., Rodacka A., Puchała M. (2014). Antioxidant properties of resveratrol and its protective effects in neurodegenerative diseases. Med. J. Cell Biol., 4: 97–117.Search in Google Scholar

Ghafarifarsani H., Nedaei S., Hoseinifar S.H., Van Doan H. (2023). Effect of different levels of chlorogenic acid on growth performance, immunological responses, antioxidant defense, and disease resistance of rainbow trout (Oncorhynchus mykiss) juveniles. Aqua-cult. Nutr., 2023: 3679002.Search in Google Scholar

Giordo R., Nasrallah G.K., Al-Jamal O., Paliogiannis P., Pintus G. (2020). Resveratrol inhibits oxidative stress and prevents mitochondrial damage induced by zinc oxide nanoparticles in zebrafish (Danio rerio). Int. J. Mol. Sci., 21: 3838.Search in Google Scholar

Giovannini C., Masella R. (2012). Role of polyphenols in cell death control. Nutr. Neurosci., 15: 134–149.Search in Google Scholar

Grau L., Soucek R., Pujol M.D. (2023). Resveratrol derivatives: Synthesis and their biological activities. Eur. J. Med. Chem., 246: 114962.Search in Google Scholar

Hata A.N., Breyer R.M. (2004). Pharmacology and signaling of pros-taglandin receptors: multiple roles in inflammation and immune modulation. Pharmacol. Ther., 103: 147–166.Search in Google Scholar

Hemmings B.A., Restuccia D.F. (2012). PI3K-PKB/Akt pathway. Cold Spring Harb. Perspect. Biol., 4: a011189.Search in Google Scholar

Herre J., Gordon S., Brown G.D. (2004). Dectin-1 and its role in the recognition of β-glucans by macrophages. Mol. Immunol., 40: 869–876.Search in Google Scholar

Hodnick W.F., Mllosavljević E.B., Nelson J.H., Pardini R.S. (1988). Electrochemistry of flavonoids: Relationships between redox potentials, inhibition of mitochondrial respiration, and production of oxygen radicals by flavonoids. Biochem. Pharmacol., 37: 2607–2611.Search in Google Scholar

Hsu C.N., Hou C.Y., Tain Y.L. (2021). Preventive aspects of early resveratrol supplementation in cardiovascular and kidney disease of developmental origins. Int. J. Mol. Sci., 22: 4210.Search in Google Scholar

Itami T., Takahashi Y., Nakamura Y. (1989). Efficacy of vaccination against vibriosis in cultured kuruma prawns Penaeus japonicus. J. Aquat. Anim. Health., 1: 238–242.Search in Google Scholar

Iuga C., Alvarez-Idaboy J.R., Russo N. (2012). Antioxidant activity of trans-resveratrol toward hydroxyl and hydroperoxyl radicals: A quantum chemical and computational kinetics study. J. Org. Chem., 77: 3868–3877.Search in Google Scholar

Jensen J.S., Wertz C.F., O’Neill V.A. (2010). Preformulation stability of trans-resveratrol and trans-resveratrol glucoside (piceid). J. Agric Food Chem., 58: 1685–1690.Search in Google Scholar

Jia E., Yan Y., Zhou M., Li X., Jiang G., Liu W., Zhang D. (2019 a). Combined effects of dietary quercetin and resveratrol on growth performance, antioxidant capability and innate immunity of blunt snout bream (Megalobrama amblycephala). Anim. Feed Sci. Technol., 256: 114268.Search in Google Scholar

Jia R., Li Y., Cao L., Du J., Zheng T., Qian H., Yin G. (2019 b). Antioxidative, anti-inflammatory and hepatoprotective effects of resveratrol on oxidative stress-induced liver damage in tilapia (Oreochromis niloticus). Com. Biochem. Physiol. C Toxicol. Pharmacol., 215: 56–66.Search in Google Scholar

Juan M.E., Gonzalez-Pons E., Munuera T., Ballester J., Rodriguez-Gil J.E., Planas J.M. (2005). Trans-resveratrol, a natural antioxidant from grapes, increases sperm output in healthy rats. J. Nutr., 135: 757–760.Search in Google Scholar

Kairisalo M., Bonomo A., Hyrskyluoto A., Mudò G., Belluardo N., Korhonen L., Lindholm D. (2011). Resveratrol reduces oxidative stress and cell death and increases mitochondrial antioxidants and XIAP in PC6.3-cells. Neurosci. Lett., 488: 263–266.Search in Google Scholar

Kao C.L., Chen L.K., Chang Y.L., Yung M.C., Hsu C.C., Chen Y.C. (2010). Resveratrol protects human endothelium from H2O2-induced oxidative stress and senescence via SIRT1 activation. J. Atheroscler. Throm., 17: 970–979.Search in Google Scholar

Kari Z.A., Téllez-Isaías G., Khoo M.I., Wee W., Kabir M.A., Cheadoloh R., Wei L.S. (2024). Resveratrol impacts on aquatic animals: a review. Fish Physiol. Biochem., 50: 1–12.Search in Google Scholar

Kasdallah-Grissa A., Mornagui B., Aouani E., Hammami M., May M., Gharbi N. (2007). Resveratrol, a red wine polyphenol, attenuates ethanol-induced oxidative stress in rat liver. Life Sci., 80: 1033–1039.Search in Google Scholar

Kaspar J.W., Niture S.K., Jaiswal A.K. (2009). Nrf2: Inrf2 (Keap1) signaling in oxidative stress. Free Radic. Biol. Med., 47: 1304–1309.Search in Google Scholar

Kavas G.O., Ayral P.A., Elhan A.H. (2013). The effects of resveratrol on oxidant/antioxidant systems and their cofactors in rats. Adv. Clin. Exp. Med., 22: 151–155.Search in Google Scholar

Khanjani M.H., Sharifinia M., Ghaedi G. (2022). β-glucan as a promising food additive and immunostimulant in aquaculture industry. Ann. Anim. Sci., 22: 817–827.Search in Google Scholar

Kincaid B., Bossy-Wetzel D (2013). Forever young: Sirt3 a shield against mitochondrial meltdown, aging, and neurodegeneration. Front. Aging Neurosci., 5: 48.Search in Google Scholar

Kitada M., Kume S., Imaizumi N., Koya D. (2011). Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway. Diabetes, 60: 634–643.Search in Google Scholar

Kopeć A., Piątkowska E., Leszczyńska T., Bieżanowska-Kopeć R. (2011). Health-promoting effects of resveratrol (in Polish). Żywn. Nauka Technol Jakość, 5: 5–15.Search in Google Scholar

Kowalska A., Siwicki A.K., Kowalski R.K. (2017). Dietary resveratrol improves immunity but reduces reproduction of broodstock medaka Oryzias latipes (Temminck & Schlegel). Fish Physiol. Biochem., 43: 27–37.Search in Google Scholar

Kristl J., Teskač K., Caddeo C., Abramović Z., Šentjurc M. (2009). Improvements of cellular stress response on resveratrol in liposomes. Eur. J. Pharm. Biopharm., 73: 253–259.Search in Google Scholar

Kumar S., Pandey A.K. (2013). Chemistry and biological activities of flavonoids: an overview. Sci. World J., 2013: 162750.Search in Google Scholar

Kung H.C., Lin K.J., Kung C.T., Lin T.K. (2021). Oxidative stress, mitochondrial dysfunction, and neuroprotection of polyphenols with respect to resveratrol in Parkinson’s disease. Biomedicines, 9: 918.Search in Google Scholar

Lam K., Cheung P. (2013). Non-digestible long chain beta-glucans as novel prebiotics. Bioact. Carbohydr. Diet Fibre, 2: 45–64. Latruffe N., Rifler J.P. (2013). Bioactive polyphenols from grapes and wine emphasized with resveratrol. Curr. Pharm. Des., 19: 6053–6063.Search in Google Scholar

Lee K.J., Dabrowski K. (2004). Long-term effects and interactions of dietary vitamin C and E on growth and reproduction of yellow perch, Perca flavescens. Aquaculture, 230: 377–389.Search in Google Scholar

Lee S.W., Najiah M., Wendy W., Nadirah M. (2009). Comparative study on antibiogram of Vibrio spp. isolated from diseased post larval and marketable-sized white leg shrimp (Litopenaeus vannamei). Front. Agric. China, 3: 446–451.Search in Google Scholar

León-González A.J., Auger C., Schini-Kerth V.B. (2015). Pro-oxidant activity of polyphenols and its implication on cancer chemoprevention and chemotherapy. Biochem. Pharmacol., 98: 371–380.Search in Google Scholar

Liang L., Tajmir-Riahi H.A., Subirade M. (2008). Interaction of β-lactoglobulin with resveratrol and its biological implications. Biomacromolecules, 9: 50–56.Search in Google Scholar

Liu H., Yang Z., Huang Y., Yang S., Huang Y., Cai S., Jian, J. (2021). Dietary resveratrol attenuates oxidative stress in Pacific white leg shrimp, Litopenaeus vannamei, in response to ammonia stress. Isr. J. Aquacult. Bamidgeh., 73: 1–10.Search in Google Scholar

Liu L., Gu L., Ma Q., Zhu D., Huang, X. (2013). Resveratrol attenuates hydrogen peroxide-induced apoptosis in human umbilical vein endothelial cells. Eur. Rev. Med. Pharmacol. Sci., 17: 88–94.Search in Google Scholar

Lopez-Nicolás J.M., Nuñez-Delicado E., Perez-Lopez A.J. (2006). Determination of stoichiometric coefficients and apparent formation constants for β-cyclodextrin complexes of trans-resveratrol using reversed-phase liquid chromatography J. Chromatogr. A, 1135: 158–165.Search in Google Scholar

Meena D., Das P., Kumar S., Mandal S., Prusty A., Singh S., Akhtar M., Behera B., Kumar K., Pal A. (2013). Beta-glucan: an ideal immunostimulant in aquaculture (a review). Fish Physiol. Biochem., 39: 431–457.Search in Google Scholar

Menoyo D., Kühn G., Ruiz-Lopez N., Pallauf K., Stubhaug I., Pastor J., Ipharraguerre I.R., Rimbach G. (2019). Dietary resveratrol impairs body weight gain due to reduction of feed intake without affecting fatty acid composition in Atlantic salmon. Animal, 13: 25–32.Search in Google Scholar

Mente E., Carter C.G., Barnes R.K., Karapanagiotidis I.T. (2011). Protein synthesis in wild-caught Norway lobster (Nephrops norvegicus L.). J. Exp. Mar. Biol. Ecol., 409: 208–214.Search in Google Scholar

Moustafa E.M., Dawood M.A., Assar D.H., Omar A.A., Elbialy Z.I., Farrag F.A., Shukry M., Zayed M.M. (2020). Modulatory effects of fenugreek seeds powder on the histopathology, oxidative status, and immune related gene expression in Nile tilapia (Oreochromis niloticus) infected with Aeromonas hydrophila. Aquaculture, 515: 734589.Search in Google Scholar

Naderi Farsani M., Meshkini S., Manaffar R. (2021). Growth performance, immune response, antioxidant capacity and disease resistance against Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss) as influenced through singular or combined consumption of resveratrol and two-strain probiotics. Aquacult. Nutr., 27: 2587–2599.Search in Google Scholar

Nawaz A., Irshad S., Hoseinifar S.H., Xiong H. (2018). The functionality of prebiotics as immunostimulant: Evidences from trials on terrestrial and aquatic animals. Fish Shellfish Immunol., 76: 272–278.Search in Google Scholar

Nimse S.B., Pal D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv., 5: 27986–28006.Search in Google Scholar

Nyström T. (2005). Role of oxidative carbonylation in protein quality control and senescence. EMBO J., 24: 1311–1317.Search in Google Scholar

Ognik K., Cholewińska E., Sembratowicz I., Grela E., Czech A. (2016). The potential of using plant antioxidants to stimulate antioxidant mechanisms in poultry. World’s Poult. Sci. J., 72: 291–298.Search in Google Scholar

Quincozes-Santos A., Gottfried C. (2011). Resveratrol modulates astroglial functions: Neuroprotective hypothesis. Ann. N. Y. Acad. Sci., 1215: 72–78.Search in Google Scholar

Rice-Evans C., Burdon R. (1993). Free radical-lipid interactions and their pathological consequences. Prog. Lipid Res., 32: 71–110.Search in Google Scholar

Robb E.L., Page M.M., Wiens B.E., Stuart J.A. (2008). Molecular mechanisms of oxidative stress resistance induced by resveratrol: Specific and progressive induction of MnSOD. Biochem. Biophys. Res. Commun., 367: 406–412.Search in Google Scholar

Rowe G.T., Boland G.S., Phoel W.C., Anderson R.F., Biscaye P.E. (1994). Deep-sea floor respiration as an indication of lateral input of biogenic detritus from continental margins. Deep Sea Res. Part II, 41: 657–668.Search in Google Scholar

Rowley A.F., Knight J., Lloyd-Evans P., Holland J.W, Vickers P.J. (1995). Eicosanoids and their role in immune modulation in fish – a brief overview. Fish Shellfish Immunol., 5: 549–567.Search in Google Scholar

Ryan M.J., Jackson J.R., Hao Y., Williamson C.L., Dabkowski E.R., Hollander J.M., Alway S.E. (2010). Suppression of oxidative stress by resveratrol after isometric contractions in gastrocnemius muscles of aged mice. J. Gerontol. A Biol. Sci. Med. Sci., 65: 815–831.Search in Google Scholar

Safari R., Hoseinifar S.H., Imanpour M.R., Mazandarani M., Sanchouli H., Paolucci M. (2020). Effects of dietary polyphenols on mucosal and humoral immune responses, antioxidant defense and growth gene expression in beluga sturgeon (Huso huso). Aquaculture, 528: 735494.Search in Google Scholar

Sahoo P., Kumari J., Mishra B. (2005). Non-specific immune responses in juveniles of Indian major carps. J. Appl. Ichthyol., 21: 151–155.Search in Google Scholar

Sakai M. (1999). Current research status of fish immunostimulants. Aquaculture, 172: 63–92.Search in Google Scholar

Sarhadi I., Alizadeh E., Ahmadifar E., Adineh H., Dawood M.A. (2020). Skin mucosal, serum immunity and antioxidant capacity of common carp (Cyprinus carpio) fed artemisia (Artemisia annua). Ann. Anim. Sci., 20: 1011–1027.Search in Google Scholar

Shahidi F., Ambigaipalan P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. J. Funct Foods, 18: 820–897.Search in Google Scholar

Sorrenti V., Benedetti F., Buriani A., Fortinguerra S., Caudullo G., Davinelli S., Zella D., Scapagnini G. (2022). Immunomodulatory and antiaging mechanisms of resveratrol, rapamycin, and metformin: Focus on mTOR and AMPK signaling networks. Pharmaceuticals, 15: 912.Search in Google Scholar

Soto-Rodriguez S.A, Gomez-Gil B., Lozano R. (2010). “Bright red” syndrome in Pacific white shrimp Litopenaeus vannamei is caused by Vibrio harveyi. Dis. Aquat. Organ., 92: 11–19.Search in Google Scholar

Spanier G., Xu H., Xia N., Tobias S., Deng S., Wojnowski L., Forster-mann U., Li H. (2009). Resveratrol reduces endothelial oxidative stress by modulating the gene expression of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPX1) and NADPH oxidase subunit (NOX4). J. Physiol. Pharm., 60: 111–116.Search in Google Scholar

Tan C., Zhou H., Wang X., Mai K., He G. (2019). Resveratrol attenuates oxidative stress and inflammatory response in turbot fed with soybean meal-based diet. Fish Shellfish Immunol., 91: 130–135.Search in Google Scholar

Tian J., Han G., Li Y., Zhao L., Wang G. (2021). Effects of resveratrol on growth, antioxidative status and immune response of snake-head fish (Channa argus). Aquacult. Nutr., 27: 1472–1481.Search in Google Scholar

Torno C., Staats S., de Pascual-Teresa S., Rimbach G., Schulz C. (2017). Fatty acid profile is modulated by dietary resveratrol in rainbow trout (Oncorhynchus mykiss). Mar. Drugs, 15: 252. Torno C., Staats S., Michl S.C., de Pascual-Teresa S., Izquierdo M.,Search in Google Scholar

Rimbach G., Schulz C. (2018). Fatty acid composition and fatty acid associated gene-expression in gilthead sea bream (Sparus aurata) are affected by low-fish oil diets, dietary resveratrol, and holding temperature. Mar. Drugs, 16: 379.Search in Google Scholar

Trela B.C., Waterhouse A.L. (1996). Resveratrol: Isomeric molar absorbivities and stability. J. Agric. Food Chem., 44: 1253–1257. Truong V.L., Jun M., Jeong W.S. (2018). Role of resveratrol in regulation of cellular defense systems against oxidative stress. BioFactors, 44: 36–49.Search in Google Scholar

Valenzano D.R., Terzibasi E., Genade T., Cattaneo A., Domenici L., Cellerino A. (2006). Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr. Biol., 16: 296–300.Search in Google Scholar

Vetvicka V., Vetvickova J. (2014). Anti-stress action of an orally-given combination of resveratrol, β-glucan, and vitamin C. Molecules, 19: 13724–13734.Search in Google Scholar

Vian M.A., Tomao V., Gallet S., Coulomb P.O., Lacombe J.M. (2005). Simple and rapid method for cis- and trans-resveratrol and piceid isomers determination in wine by high-performance liquid chromatography using chromolith columns. J. Chromatogr. A, 1085: 224–229.Search in Google Scholar

Wang X., Kim K.W., Bai S.C., Huh M.D., Cho B.Y. (2003). Effects of the different levels of dietary vitamin C on growth and tissue ascorbic acid changes in parrot fish (Oplegnathus fasciatus). Aquaculture, 215: 203–211.Search in Google Scholar

Wilson W.N., Baumgarner B.L., Watanabe W.O., Alam M.S., Kinsey, S. T. (2015). Effects of resveratrol on growth and skeletal muscle physiology of juvenile southern flounder. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 183: 27–35.Search in Google Scholar

Wu L., Chen Q., Dong B., Han D., Zhu X., Liu H., Yang Y., Xie S., Jin J. (2023). Resveratrol attenuated oxidative stress and inflammatory and mitochondrial dysfunction induced by acute ammonia exposure in gibel carp (Carassius gibelio). Ecotoxicol. Environ. Saf., 251: 114544.Search in Google Scholar

Xia L., Ding F., Zhu J.H., Fu G.S. (2011). Resveratrol attenuates apoptosis of pulmonary microvascular endothelial cells induced by high shear stress and proinflammatory factors. Human Cell., 24: 127–133.Search in Google Scholar

Xu Y., Nie L., Yin Y.G., Tang J.L., Zhou J.Y., Li D.D. (2012). Resveratrol protects against hyperglycemia-induced oxidative damage to mitochondria by activating SIRT1 in rat mesangial cells. Toxicol. Appl. Pharmacol., 259: 395–401.Search in Google Scholar

Yan Y.N., Xia S.L., Tian H.Y., Xu C., Jia E.T., Liu W.B., Zhang D.D. (2017). Effects of resveratrol supplementation on growth performance, immunity, antioxidant capability and disease resistance of blunt snout bream fed high-fat diet. Acta Hydrobiol. Sin., 41: 155–164.Search in Google Scholar

Ye W., Zheng Y., Sun Y., Li Q., Zhu H., Xu G. (2023). Transcriptome analysis of the response of four immune related organs of tilapia (Oreochromis niloticus) to the addition of resveratrol in feed. Fish Shellfish Immunol., 133: 108510.Search in Google Scholar

Zhang J., Dai X.F., Huang J.Y. (2012 a). Resveratrol binding to fibrinogen and its biological implication. Food Biophys., 7: 35–42. Zhang J., Mi Q., Shen M. (2012 b). Resveratrol binding to collagen and its biological implication. Food Chem., 131: 879–884.Search in Google Scholar

Zhao X., Guo Y., Ni P., Liu J., Wang F., Xing Z., Ye S. (2020). Resveratrol inhibits the virulence of Vibrio harveyi by reducing the activity of Vibrio harveyi hemolysin. Aquaculture, 522: 735086Search in Google Scholar

Zheng Y., Zhao Z., Wu W., Song C., Meng S., Fan L., Bing X., Chen, J. (2017). Effects of dietary resveratrol supplementation on hepatic and serum pro-/anti-inflammatory activity in juvenile GIFT tilapia, Oreochromis niloticus. Dev. Comp. Immunol., 73: 220–228.Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Scienze biologiche, Biotecnologia, Zoologia, Medicina, Medicina veterinaria