Accesso libero

Strategies for promoting sustainable aquaculture in arid and semi-arid areas – A review

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Allan G.L., Heasman H., Bennison S. (2008). Development of industrial- scale inland saline aquaculture: coordination and communication of research and development in Australia. Final Report to the Fisheries Research and Development Corporation for Project No. 2004/241. NSW Department of Primary Industries – Fisheries Final Report Series No. 99, 245 pp. Search in Google Scholar

Avnimelech Y., Chamberlain G., Neori A., Sadek S., Verdegem M. (2019). Aquaculture as a solution to droughts. World Aquac., 2019: 55–57. Search in Google Scholar

Ayala F., Vargas T. (1987). Experiments on Spirulina culture on wasteeffluent media and at the pilot plant. In: Twelfth International Seaweed Symposium, Ragan M.A., Bird C.J. (eds). Hydrobiologia, 151/152: 91–93. Search in Google Scholar

Belton B., Bush S.R., Little D.C. (2018). Not just for the wealthy: Rethinking farmed fish consumption in the Global South. Glob. Food Sec., 16: 85–92. Search in Google Scholar

Belton B., Little D.C., Zhang W., Edwards P., Skladany M., Thilsted S.H. (2020). Farming fish in the sea will not nourish the world. Nat. Commun. 11: 1–8. Search in Google Scholar

Benemann J.R. (2008). Opportunities and challenges in algae biofuels production. [online]. Position paper by Dr. John R. Benemann in line with Algae World 2008. 15 pp. www.futureenergyevents.com/algae/whitepaper/algae_positionpaper.pdf Search in Google Scholar

Cabrera-González M., Ramonet F., Harasek M. (2022). Development of a model for the implementation of the circular economy in desert coastal regions. Land, 11. Search in Google Scholar

Cai J., Quagrainie K., Hishamunda N. (2017). Social and economic performance of tilapia farming in Africa. FAO Fisheries and Aquaculture Circular. C1130. Search in Google Scholar

Chadwick R., Good P., Martin G., Rowell D.P. (2016). Large rainfall changes consistently projected over substantial areas of tropical land. Nat. Clim. Change, 6: 177−181. Search in Google Scholar

Correia M., Azevedo I.C., Peres H., Magalhães R., Oliva-Teles A., Almeida C.M.R., Guimarães L. (2020). Integrated multi-trophic aquaculture: A laboratory and hands-on experimental activity to promote environmental sustainability awareness and value of aquaculture products. Front. Mar. Sci., 7: 156. Search in Google Scholar

Costello C., Cao L., Gelcich S., Cisneros-Mata M.Á., Free C.M., Froehlich H.E., Golden C.D., Ishimura G., Maier J., Macadam-Somer I., Mangin T., Melnychuk M.C., Miyahara M., de Moor C.L., Naylor R., Nøstbakken L., Ojea E., O’Reilly, Parma A.M., Plantinga A.J., Thilsted S.H., Lubchenco J. (2020). The future of food from the sea. Nature, 588: 95–100. Search in Google Scholar

Cottrell R.S., Ferraro D.M., Blasco G.D., Halpern B.S., Froehlich H.E. (2021). The search for blue transitions in aquaculture-dominant countries. Fish Fisher., 22: 1006–1023. Search in Google Scholar

Cowan N., Ferrier L., Spears B., Drewer J., Reay D., Skiba U. (2022). CEA systems: the means to achieve future food security and environmental sustainability? Front. Sustain. Food Syst., 6: 891256. Search in Google Scholar

Crespi V. (2009). Support to the development of desert aquaculture and management of the brackish water lakes in Algeria. FAO Aquaculture Newsletters, FAO, Rome, 43: 20–22. Search in Google Scholar

Crespi V., Lovatelli A. (2011 a). Aquaculture in desert and arid lands: development constraints and opportunities. FAO Technical Workshop. 6–9.07.2010, Hermosillo, Mexico. FAO Fish. Aquacult. Proc., 20: 202. Search in Google Scholar

Crespi V., Lovatelli A. (2011 b). Global desert aquaculture at a glance. In: Aquaculture in desert and arid lands: development constraints and opportunities, Crespi V., Lovatelli A. (eds). FAO Technical Workshop, 6–9.07.2010, Hermosillo, Mexico. FAO Fish. Aquacult. Proc., 20: 25–37. Search in Google Scholar

Ellen MacArthur Foundation (2019). What is a circular economy? Available online at: https://www.ellenmacarthurfoundation.org/circular-economy/concept (accessed April 13, 2019). Search in Google Scholar

El-Sayed A.F.M. (2006). Tilapia culture. CABI Publishing, Oxfordshire, U.K., 277. Search in Google Scholar

Enciso-Lopez A.R., García-Trejo J.F. (2019). Challenges of inland finfish aquaculture in arid regions in North America. Proc. Conf.: CONIIN, Querétaro, México. Search in Google Scholar

FAO (1996). Precautionary approach to capture fisheries and species introduction. FAO Technical Guidelines for Responsible Fisheries. No. 2. Rome. 54 pp. (also available at ftp://ftp.fao.org/docrep/fao/003/W3592e/W3592e00.pdf). Search in Google Scholar

FAO (2007). Aquaculture development. 2. Health management for responsible movement of live aquatic animals. FAO Technical Guidelines for Responsible Fisheries. No. 5, Suppl. 2. Rome. 31 pp. (also available at www.fao.org/docrep/010/a1108e/a1108e00.htm). Search in Google Scholar

FAO (2010). The state of world fisheries and aquaculture 2010. Rome. 197 pp. (also available at www.fao.org/docrep/013/i1820e/i1820e.pdf). FAO (2011). Global map of aridity – 10 arc minutes [online]. Rome [Cited 14 October 2011]. www.fao.org/geonetwork/srv/en/metadata.show?id=37040 Search in Google Scholar

FAO (2021). The State of Food Security and Nutrition in the World. Transforming food systems for food security, improved nutrition and affordable healthy diets for all. Rome, FAO. https://doi.org/10.4060/cb4474en. Search in Google Scholar

FAO (2022 a). Record fisheries and aquaculture production makes critical contribution to global food security [EN/AR/IT/RU/ZH]. https://reliefweb.int/report/world/record-fisheries-and-aquaculture-production-makes-critical-contributionglobal-food-security-enaritruzh. Search in Google Scholar

FAO (2022 b). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO. https://doi.org/10.4060/cc0461en Search in Google Scholar

Fishelson L., Loya Y. (1969). Experiments on rearing tilapia-hybrids in brackish water pond near the Dead Sea. Limnology, 17: 602–610. Search in Google Scholar

Fry J.P., Mailloux N.A., Love D.C., Milli C.M., Ling C. (2018). Feed conversion efficiency in aquaculture: Do we measure it correctly. Environ. Res. Lett., 13: 024017. Search in Google Scholar

Gephart J.A., Henriksson P.J.G., Parker R.W.R., Shepon A., Gorospe K.D., Bergman K., Eshel G., Golden C.D., Halpern B.S., Hornborg S., Jonell M., Metian M., Mifflin K., Newton R., Tyedmers P., Zhang W., Ziegler F., Troell M. (2021). Environmental performance of blue foods. Nature, 597: 360–365. Search in Google Scholar

Global Health 50/50, and International Food Policy Research Institute. (2021). The Global Food 50/50 Report 2021. Search in Google Scholar

Godde C.M., Mason-D’Croz D., Mayberry D.E., Thornton P.K., Herrero M. (2021). Impacts of climate change on the livestock food supply chain; a review of the evidence. Glob. Food Sec., 28: 100488. Search in Google Scholar

Golden C.D., Koehn J.Z., Shepon A., Passarelli S., Free C.M., Viana D.F., Matthey H., et al. (2021). Aquatic foods to nourish nations. Nature, 598: 315–320. Search in Google Scholar

Graham N.A., Pueppke S.G., Nurtazin S., Konysbayev T., Gibadulin F., Sailauov M. (2022). The changing dynamics of Kazakhstan’s fisheries sector: from the early Soviet era to the twenty-first century. Water, 14: 1409. Search in Google Scholar

Habib M.A.B., Parvin M., Huntington T.C., Hasan M.R. (2008). A review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish. FAO Fisheries and Aquaculture Circular. Rome, 1034, 33 pp. Search in Google Scholar

Henriksson P.J.G., Troell M., Banks L.K., Belton B., Beveridge M.C.M., Klinger D.H., Pelletier N., Phillips M.J., Tran N. (2021). Interventions for improving the productivity and environmental performance of global aquaculture for future food security. One Earth, 4: 1220–1232. Search in Google Scholar

Huang J., Li Y., Fu C., Chen F., Fu Q., Dai A., Shinoda M., Ma Z., Guo W., Li Z. (2017). Dryland climate change: Recent progress and challenges. Rev. Geophys., 55: 719–778. Search in Google Scholar

IPCC (2022). Climate Change 2022: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Pörtner H.-O., Roberts D.C., Tignor M., Poloczanska E.S., Mintenbeck K., Alegría A., Craig M., Langsdorf S., Löschke S., Möller V., Okem A., Rama B. (eds). Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp. Search in Google Scholar

Kaleem O., Sabi A.B.S. (2021). Overview of aquaculture systems in Egypt and Nigeria, prospects, potentials, and constraints. Aquac. Fish., 6: 535–547. Search in Google Scholar

Keshavarzifard M., Vazirzadeh A., Sharifinia M. (2020). Implications of anthropogenic effects on the coastal environment of Northern Persian Gulf, using jinga shrimp (Metapenaeus affinis) as indicator. Mar. Pollut. Bull., 159: 111463. Search in Google Scholar

Khanjani M.H., Sharifinia M. (2022). Biofloc as a food source for banana shrimp (Fenneropenaeus merguiensis) postlarvae. N. Am. J. Aquac., 45: 469–479. Search in Google Scholar

Khanjani M.H., Sajjadi M., Alizadeh M., Sourinejad I. (2016). Study on nursery growth performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) under different feeding levels in zero water exchange system. Iran. J. Fish. Sci., 15: 1465–1484. Search in Google Scholar

Khanjani M.H., Alizadeh M., Mohammadi M., Sarsangi Aliabad H. (2021). The effect of adding molasses in different times on performance of Nile tilapia (Oreochromis niloticus) raised in a lowsalinity biofloc system. Ann. Anim. Sci., 21: 1435–1454. Search in Google Scholar

Khanjani M.H., Torfi Mozanzade M., Fóes G.K. (2022 a). Aquamimicry system: a suitable strategy for shrimp aquaculture. Ann. Anim. Sci., 22: 1201–1210. Search in Google Scholar

Khanjani M.H., Mohammadi A., Emerenciano M.G.C. (2022 b). Microorganisms in biofloc aquaculture system. Aquac. Rep., 26: 101300. Search in Google Scholar

Khanjani M.H., Eslami J., Ghaedi G., Sourinejad I. (2022 c). The effects of different stocking densities on nursery performance of banana shrimp (Fenneropenaeus merguiensis) reared under biofloc condition. Ann. Anim. Sci., 22: 1291–1299. Search in Google Scholar

Khanjani M.H., Zahedi S., Mohammadi A. (2022 d). Integrated multitrophic aquaculture (IMTA) as an environmentally friendly system for sustainable aquaculture: functionality, species, and application of biofloc technology (BFT). Environ. Sci. Pollut. Res., 29: 67513–67531. Search in Google Scholar

Khanjani M.H., Sharifinia M., Ghaedi G. (2022 e). β-glucan as a promising food additive and immunostimulant in aquaculture industry. Ann. Anim. Sci., 22: 817–827. Search in Google Scholar

Khanjani M.H., Ghaedi G., Sharifinia M. (2022 f). Effects of diets containing β-glucan on survival, growth performance, hematological, immunity and biochemical parameters of rainbow trout (Oncorhynchus mykiss) fingerlings. Aquac. Res., 53: 1842–1850. Search in Google Scholar

Khanjani M.H., Mozanzadeh M.T., Sharifinia M., Emerenciano M.G.C. (2023 a). Biofloc: A sustainable dietary supplement, nutritional value and functional properties. Aquaculture, 562: 738757. Search in Google Scholar

Khanjani M.H., da Silva L.O.B., Foes G.K., Vieira F.D., Poli M., Santos M., Emerenciano M.G.C. (2023 b). Synbiotics and aquamimicry as alternative microbial-based approaches in intensive shrimp farming and biofloc: Novel disruptive techniques or complementary management tools? A scientific-based overview. Aquaculture, 567: 739273. Search in Google Scholar

Khanjani M.H., Sharifinia M., Emerenciano M.G.C. (2023 c). A detailed look at the impacts of biofloc on immunological and hematological parameters and improving resistance to diseases. Fish Shellfish Immunol., 137: 108796. Search in Google Scholar

Khosla R., Inman D., Westfall D., Reich R., Frasier M., Mzuku M., Koch B., Hornung A. (2008). A synthesis of multi-disciplinary research in precision agriculture: site-specific management zones in the semi-arid western Great Plains of the USA. Precis. Agric., 9: 85–100. Search in Google Scholar

Kolkovski S. (2011). An overview on desert aquaculture in Australia. In: Aquaculture in desert and arid lands: development constraints and opportunities, Crespi V., Lovatelli A. (eds). FAO Technical Workshop. 6–9.07.2010, Hermosillo, Mexico. FAO Fish. Aquacult. Proc., 20: 39–60. Search in Google Scholar

Kolkovski S., Simon Y., Hulata G., Ayaril N. (2011). Desert aquaculture. In: Aquaculture: Farming aquatic animals and plants. Second Edition, Lucas J.S., Southgate P.C. (eds). Paperback Wiley-Blackwell, pp. 107–125. Search in Google Scholar

Kotzen B., Emerenciano M.G.C., Moheimani N., Burnell G.M. (2019). Aquaponics: alternative types and approaches. In: Aquaponics food production systems, Goddek S., Joyce A., Kotzen B., Burnell G. (eds). https://doi.org/10.1007/978-3-030-15943-6_12. Search in Google Scholar

Mapfumo B. (2011). An overview on desert aquaculture in Sothern Africa. In: Aquaculture in desert and arid lands: development constraints and opportunities, Crespi V., Lovatelli A. (eds). FAO Technical Workshop, 6–9.07.2010, Hermosillo, Mexico, FAO Fish. Aquacult. Proc., 20: 119–140. Search in Google Scholar

Martins C.I.M., Eding E.H., Verdegem M.C.J., Heinsbroek L.T.N., Schneider O., Blancheton J.P., Roque d’Orbcastel E., Verreth J.A.J. (2010). New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquac. Eng., 43: 83–93. Search in Google Scholar

McCord P.F., Cox M., Schmitt-Harsh M., Evans T. (2015). Crop diversification as a smallholder livelihood strategy within semi-arid agricultural systems near Mount Kenya. Land Use Policy, 42: 738–750. Search in Google Scholar

McLennon E., Dari B., Jha G., Sihi D., Kankarla V. (2021). Regenerative agriculture and integrative permaculture for sustainable and technology driven global food production and security. Agron. J., 113: 4541–4559. Search in Google Scholar

McMurtry M.R., Sanders D.C., Cure J.D., Hodson R.G., Haning B.C., St. Amand P.C. (1997). Efficiency of water use of an integrated fish/vegetable co-culture system. J. World Aquac. Soc., 28: 420–428. Search in Google Scholar

Mires D. (2000). Development of inland aquaculture in arid climates: water utilization strategies applied in Israel. Fish. Manag. Ecol., 7: 189–195. Search in Google Scholar

Mizyed N.R. (2013). Challenges to treated wastewater reuse in arid and semi-arid areas. Environ. Sci. Policy, 25: 186–195. Search in Google Scholar

Muscat A., de Olde E.M., Ripoll-Bosch R., Van Zanten H.H.E., Metze T.A.P., Termeer C.J.A.M., van Ittersum M.K., de Boer I.J.M. (2021). Principles, drivers and opportunities of a circular bioeconomy. Nat. Food, 2: 561–566. Search in Google Scholar

Naylor R.L., Kishore A., Sumaila U.R., et al. (2021). Blue food demand across geographic and temporal scales. Nat. Commun., 12: 5413. Search in Google Scholar

Nenciu F., Voicea I., Cocarta D.M., Vladut V.N., Matache M.G., Arsenoaia V.N. (2022). “Zero-Waste” food production system supporting the synergic interaction between aquaculture and horticulture. Sustainability, 14: 13396. Search in Google Scholar

Pruginin Y., Fishelson L., Koren A. (1988). Intensive tilapia farming in brackishwater from an Israeli desert aquifer. In: The Second International Symposium on Tilapia in Aquaculture, Pullin R.S.V., Bhukaswan T., Tonguthai K., Maclean J.L. (eds). ICLARM Conference Proceedings, Department of Fisheries, Bangkok, Thailand, and International Center for Living Aquatic Resources Management, Manila, Philippines, 15: 75–81. Search in Google Scholar

Pueppke S.G., Nurtazin S., Ou W. (2020). Water and land as shared resources for agriculture and aquaculture: insights from Asia. Water, 12: 2787. Search in Google Scholar

Rakocy J., Masser M.P., Losordo T. (2016). Recirculating aquaculture tank production systems: aquaponics – integrating fish and plant culture. SRAC Publication No. 454, Southern Regional Aquaculture Center, Stoneville, MS, USA. Search in Google Scholar

Rasheed R., Thaher M., Younes N., Bounnit T., Schipper K., Nasrallah G.K., Al Jabri H., Gifuni I., Goncalves O., Pruvost J. (2022). Solar cultivation of microalgae in a desert environment for the development of techno-functional feed ingredients for aquaculture in Qatar. Sci. Total Environ., 835: 155538. Search in Google Scholar

Reid G.K., Gurney-Smith H.J., Flaherty M., et al. (2019). Climate change and aquaculture: considering adaptation potential. Aquac. Environ. Interact., 11: 603–624. Search in Google Scholar

Reynolds J.F., Smith D.M.S., Lambin E.F., Turner B., Mortimore M., Batterbury S.P., Downing T.E., Dowlatabadi H., Fernández R.J., Herrick J.E. (2007). Global desertification: building a science for dryland development. Science, 316: 847–851. Search in Google Scholar

Richmond A., Preiss K. (1980). The biotechnology of alga culture. Interdiscip. Sci. Rev., 5: 60–70. Search in Google Scholar

Sadek S. (2011). An overview on desert aquaculture in Egypt. In: Aquaculture in desert and arid lands: development constraints and opportunities, Crespi V., Lovatelli A. (eds). FAO Technical Workshop, 6–9.07.2010, Hermosillo, Mexico. FAO Fish. Aquacult. Proc., 20: 141–158. Search in Google Scholar

Sadek S., Sabry M., El-Samadony E. (2011). Fish and shrimp culture in salt ground water of Rula Land Reclamation Land Company, Wadi-Group, Egypt: lessons of the first three years (2008–2011). In Integrated aquaculture – agriculture in Egypt towards more efficient use of water resources workshop, 21.04.2011, Cairo, Egypt. The Netherlands, Wageningen University, Centre for Development Innovation, and Cairo, Egyptian Fish Council, 9 pp. Search in Google Scholar

Segovia Quintero M. (2011). An overview on desert aquaculture in Mexico. In: Aquaculture in desert and arid lands: development constraints and opportunities, Crespi V., Lovatelli A. (eds). FAO Technical Workshop, 6–9.07.2010, Hermosillo, Mexico. FAO Fish. Aquacult. Proc., 20: 187–202. Search in Google Scholar

Sharifinia M. (2015). Macroinvertebrates of the Iranian running waters: a review. Acta Limnol. Bras., 27: 356–369. Search in Google Scholar

Sharifinia M., Penchah M.M., Mahmoudifard A., Gheibi A., Zare R. (2015). Monthly variability of chlorophyll-α concentration in Persian Gulf using remote sensing techniques. Sains Malays., 44: 387–397. Search in Google Scholar

Sharifinia M., Adeli B., Nafarzadegan A.R. (2017). Evaluation of water quality trends in the Maroon River Basin, Iran, from 1990 to 2010 by WQI and multivariate analyses. Environ. Earth Sci., 76: 1–13. Search in Google Scholar

Sharifinia M., Bahmanbeigloo Z.A., Keshavarzifard M., Khanjani M.H., Daliri M., Koochaknejad E., Jasour M.S. (2023). The effects of replacing fishmeal by mealworm (Tenebrio molitor) on digestive enzymes activity and hepatopancreatic biochemical indices of Litopenaeus vannamei. Ann. Anim. Sci., 23: 519–528. Search in Google Scholar

Smith M., Veth P., Hiscock P., Wallis L.A. (2008). Global desert in perspective. In: Desert peoples: archaeological perspectives, Smith M., Veth P., Hiscock P. (eds). Blackwell Publishing, pp. 1–14. Search in Google Scholar

Soleimani-Sardo M., Khanjani M.H. (2022). Utilization of unconventional water resources (UWRs) for aquaculture development in arid and semi-arid regions: A review. Ann. Anim. Sci., 23: 11–23. Search in Google Scholar

Suloma A., Ogata H.Y. (2006). Future of rice-fish culture, desert aquaculture and feed development in Africa: the case of Egypt as the leading country in Africa. Jpn. Agric. Res. Q., 40: 351–360. Search in Google Scholar

Tigchelaar M., Cheung W.W.L., Mohammed E.Y., Phillips M.J., Payne H.J., Selig E.R., Wabnitz C.C.C., Oyinlola M.A., et al. (2021). Compound climate risks threaten aquatic food system benefits. Nat. Food, 2: 673–682. Search in Google Scholar

Timmons M.B., Ebeling J.M. (2007). Recirculating Aquaculture Systems, Second Edition, Cayuga Aqua Ventures, Ithaca, NY USA. Search in Google Scholar

Treece G. (2011). An overview on desert aquaculture in the United States of America. In: Aquaculture in desert and arid lands: development constraints and opportunities, Crespi V., Lovatelli A. (eds). FAO Technical Workshop, 6–9.07.2010, Hermosillo, Mexico, FAO Fish. Aquacult. Proc., 20: 159–185. Search in Google Scholar

Troell M. (2009). Integrated marine and brackishwater aquaculture in tropical regions: research, implementation and prospects. In: Integrated mariculture: a global review, Soto D. (ed.). FAO Fish. Aquacult. Technic. Pap., Rome, FAO, 529: 47–131. Search in Google Scholar

Troell M., Naylor R.L., Metian M., Beveridge M., Tyedmers P.H., et al. (2014). Does aquaculture add resilience to the global food system? Proc. Natl Acad. Sci., 111: 13257–13263. Search in Google Scholar

United Nations Convention to Combat Desertification (UNCCD). (2007). Desertification, exacerbated by climate change, represents one of the greatest environmental challenges of our times. [online]. Search in Google Scholar

UNCCD thematic fact sheet series No. 1. Climate change and desertification. [cited 14 October 2011]. www.unccd.int/documents/Desertificationandclimatechange.pdf. Search in Google Scholar

Vasdravanidis C., Alvanou M.V., Lattos A., Papadopoulos D.K., Chatzigeorgiou I., Ravani M., Liantas G., Georgoulis I., Feidantsis K., Ntinas G.K., Giantsis I.A. (2022). Aquaponics as a promising strategy to mitigate impacts of climate change on rainbow trout culture. Animals, 12: 2523. Search in Google Scholar

Verdegem M.C.J., Bosma R.H., Verreth J.A.V. (2006). Reducing water use for animal production through aquaculture. Water Resour. Dev., 22: 101–113. Search in Google Scholar

Yeganeh V., Sharifinia M., Mobaraki S., Dashtiannasab A., Aeinjamshid K., Borazjani J.M., Maghsoudloo T. (2020). Survey of survival rate and histological alterations of gills and hepatopancreas of the Litopenaeus vannamei juveniles caused by exposure of Margalefidinium / Cochlodinium polykrikoides isolated from the Persian Gulf. Harmful Algae., 97: 101856. Search in Google Scholar

Yue K., Shen Y. (2022). An overview of disruptive technologies for aquaculture. Aquac. Fish., 7: 111–120. Search in Google Scholar

Zhang S.Y., Li G., Wu H.B., Liu X.G., Yao Y.H., Tao L., Liu H. (2011). An integrated recirculating aquaculture system (RAS) for landbased fish farming: The effects on water quality and fish production. Aquac. Eng., 45: 93–102. Search in Google Scholar

eISSN:
2300-8733
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine