Dettagli della rivista
Prima pubblicazione
25 Nov 2011
Frequenza di pubblicazione
4 volte all'anno
Accesso libero

Biofloc technology in aquaculture: Advantages and disadvantages from social and applicability perspectives

Pubblicato online: 17 May 2023
Volume & Edizione: AHEAD OF PRINT
Pagine: -
Ricevuto: 13 Jan 2023
Accettato: 13 Apr 2023
Dettagli della rivista
Prima pubblicazione
25 Nov 2011
Frequenza di pubblicazione
4 volte all'anno

Aalimahmoudi M., Mohammadiazarm H. (2019). Dietary protein level and carbon/nitrogen ratio manipulation in bioflocs rearing of Cyprinus carpio juvenile: Evaluation of growth performance, some blood biochemical and water parameters. Aquaculture, 513: 734408. Search in Google Scholar

Adineh H., Naderi M., Khademi Hamidi M., Harsij M. (2019). Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density. Fish Shellfish Immunol., 95: 440–448. Search in Google Scholar

AftabUddin S., Siddique M.A.M., Sein A., Dey P.K., Rashed-Un-Nabi M., Haque M.A. (2020). First use of biofloc technology for Penaeus monodon culture in Bangladesh: Effects of stocking density on growth performance of shrimp, water quality and bacterial growth. Aquac. Reports, 18: 100518. Search in Google Scholar

Aguilera-Rivera D., Escalante-Herrera K., Gaxiola G., Prieto-Davó A., Rodríguez-Fuentes G., Guerra-Castro E., Hernández-López J., Chávez-Sánchez M.C., Rodríguez-Canul R. (2019). Immune response of the Pacific white shrimp, Litopenaeus vannamei, previously reared in biofloc and after an infection assay with Vibrio harveyi. J. World Aquac. Soc., 50: 119–136. Search in Google Scholar

Ahmad I., Leya T., Saharan N., Asanaru Majeedkutty B.R., Rathore G., Gora A.H., Bhat I.A., Verma A.K. (2019). Carbon sources affect water quality and haemato-biochemical responses of Labeo rohita in zero-water exchange biofloc system. Aquac. Res., 50: 2879–2887. Search in Google Scholar

Ahmed N., Thompson S., Glaser M. (2019). Global Aquaculture Productivity, Environmental Sustainability, and Climate Change Adaptability. Environ. Manage., 63: 159–172. Search in Google Scholar

Aliabad H. S., Naji A., Mortezaei S. R. S., Sourinejad I., Akbarzadeh A. (2022). Effects of restricted feeding levels and stocking densities on water quality, growth performance, body composition and mucosal innate immunity of Nile tilapia (Oreochromis niloticus) fry in a biofloc system. Aquaculture, 546: 737320. Search in Google Scholar

Anand P.S.S., Kohli M.P.S., Kumar S., Sundaray J.K., Roy S.D., Venkateshwarlu G., Sinha A., Pailan G.H. (2014). Effect of dietary supplementation of biofloc on growth performance and digestive enzyme activities in Penaeus monodon. Aquaculture, 418–419: 108–115. Search in Google Scholar

Anand P.S.S., Kumar S., Kohli M.P.S., Sundaray J.K., Sinha A., Pailan G.H., Dam Roy S. (2017). Dietary biofloc supplementation in black tiger shrimp, Penaeus monodon: effects on immunity, antioxidant and metabolic enzyme activities. Aquac. Res., 48: 4512–4523. Search in Google Scholar

Assefa A., Abunna F. (2018). Maintenance of fish health in aquaculture: Review of epidemiological approaches for prevention and control of ınfectious disease of fish. Vet. Med. Int., 2018. Search in Google Scholar

Avnimelech Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176: 227–235. Search in Google Scholar

Avnimelech Y. (2009). Biofloc technology: a practical guide book, B. Rouge (ed.). The World Aquaculture Society. Search in Google Scholar

Avnimelech Y., Ritvo G. (2003). Shrimp and fish pond soils: Processes and management. Aquaculture, 220: 549–567. Search in Google Scholar

Avnimelech Y., Kochva M., Diab S. (1994). Development of controlled intensive aquaculture systems with a limited water exchange and adjusted carbon to nitrogen ratio. Isr. J. Aquac., 46: 119–131. Search in Google Scholar

Azim M.E., Little D.C. (2008). The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283: 29–35. Search in Google Scholar

Azim M.E., Little D.C., Bron J.E. (2008). Microbial protein production in activated suspension tanks manipulating C:N ratio in feed and the implications for fish culture. Biores. Technol., 99: 3590–3599. Search in Google Scholar

Azimi A., Shekarabi S.P.H., Paknejad H., Harsij M., Khorshidi Z., Zolfaghari M., Hatami A.S., Dawood M.A.O., Mazloumi N., Zakariaee H. (2022). Various carbon/nitrogen ratios in a biofloc-based rearing system of common carp (Cyprinus carpio) fingerlings: Effect on growth performance, immune response, and serum biochemistry. Aquaculture, 548: 737622. Search in Google Scholar

Babin A., Biard C., Moret Y. (2015). Dietary supplementation with carotenoids ımproves ımmunity without ıncreasing ıts cost in a crustacean. Am. Natur., 176: 234–241. Search in Google Scholar

Badiola M., Mendiola D., Bostock J. (2012). Recirculating Aquaculture Systems (RAS) analysis: Main issues on management and future challenges. Aquac. Eng., 51: 26–35. Search in Google Scholar

Bakhshi F., Najdegerami E., Manaffar R., Tokmechi A., Rahmani Farah K., Shalizar Jalali A. (2018). Growth performance, haematology, antioxidant status, immune response and histology of common carp (Cyprinus carpio L.) fed biofloc grown on different carbon sources. Aquac. Res., 49: 393–403. Search in Google Scholar

Besen K.P., da Cunha L., Delziovo F.R., Melim E.W.H., Cipriani L.A., Gomes R., Skoronski E., Fabregat T.E.H.P. (2021). Goldfish (Carassius auratus) larviculture in biofloc systems: Level of Artemia nauplii, stocking density and concentration of the bioflocs. Aquaculture, 540: 736738. Search in Google Scholar

Bossier P., Ekasari J. (2017). Biofloc technology application in aquaculture to support sustainable development goals. Microb. Biotechnol., 10: 1012–1016. Search in Google Scholar

Boyd C.E., McNevin A.A. (2015). Aquaculture, resource use, and the environment. John Wiley & Sons. Search in Google Scholar

Boyd C.E., D’Abramo L.R., Glencross B.D., Huyben D.C., Juarez L.M., Lockwood G.S., McNevin A.A., Tacon A.G.J., Teletchea F., Tomasso J.R., Tucker C.S., Valenti W.C. (2020). Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. J. World Aquac. Soc., 51: 578–633. Search in Google Scholar

Burford M.A., Thompson P.J., McIntosh R.P., Bauman R.H., Pearson D.C. (2004). The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture, 232: 525–537. Search in Google Scholar

Cao L., Wang W., Yang Y., Yang C., Yuan Z., Xiong S., Diana J. (2007). Environmental impact of aquaculture and countermeasures to aquaculture pollution in China. Environ. Sci. Pollut. Res. - Int., 14: 452–462. Search in Google Scholar

Chen J., Liu P., Li Y., Li M., Xia B. (2018). Effects of dietary biofloc on growth, digestibility, protein turnover and energy budget of sea cucumber Apostichopus japonicus (Selenka). Anim. Feed Sci. Technol., 241: 151–162. Search in Google Scholar

Chen X., Luo G., Tan J., Tan H., Yao M. (2020). Effects of carbohydrate supply strategies and biofloc concentrations on the growth performance of African catfish (Clarias gariepinus) cultured in biofloc systems. Aquaculture, 517: 734808. Search in Google Scholar

Cho S.-H., Jeong J.-H., Kim M.-H., Lee K.-T., Kim D.-J., Kim K.-H., Oh S.-P., Han C.-H. (2015). The effects of temperature on maintaining the stability of water quality in biofloc-based zero-water exchange culture tanks. J. Life Sci., 25: 496–506. Search in Google Scholar

Chopin T., MacDonald B., Robinson S., Cross S., Pearce C., Knowler D., Noce A., Reid G., Cooper A., Speare D., Burridge L., Crawford C., Sawhney M., Ang K.P., Backman C., Hutchinson M. (2013). La red de acuicultura multi-trófica integrada en Canadá (RAMTIC) – La red para una nueva era de acuicultura ecológicamente responsable. Fisheries, 38: 297–308. Search in Google Scholar

Crab R., Chielens B., Wille M., Bossier P., Verstraete W. (2010). The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquac. Res., 41: 559–567. Search in Google Scholar

Crab R., Defoirdt T., Bossier P., Verstraete W. (2012). Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture, 356: 351–356. Search in Google Scholar

Cullis J.D.S., Rossouw N., du Toit G., Petrie D., Wolfaardt G., de Clercq W., Horn A. (2018). Economic risks due to declining water quality in the breede river catchment. Water SA, 44: 464–473. Search in Google Scholar

da Cunha L., Besen K.P., Ha N., Uczay J., Skoronski E., Fabregat T.E.H.P. (2020). Biofloc technology (BFT) improves skin pigmentation of goldfish (Carassius auratus). Aquaculture, 522: 735132. Search in Google Scholar

da Silveira L.G.P., Krummenauer D., Poersch L.H., Rosas V.T., Wasielesky W. (2020). Hyperintensive stocking densities for Litopenaeus vannamei grow-out in biofloc technology culture system. J. World Aquac. Soc., 51: 1290–1300. Search in Google Scholar

Das R.R., Sarkar S., Saranya C., Esakkiraj P., Aravind R., Saraswathy R., Rekha P.N., Muralidhar M., Panigrahi A. (2022). Co-culture of Indian white shrimp, Penaeus indicus and seaweed, Gracilaria tenuistipitata in amended biofloc and recirculating aquaculture system (RAS). Aquaculture, 548: 737432. Search in Google Scholar

Dauda A.B., Romano N., Ebrahimi M., Teh J.C., Ajadi A., Chong C.M., Karim M., Natrah I., Kamarudin M.S. (2018). Influence of carbon/nitrogen ratios on biofloc production and biochemical composition and subsequent effects on the growth, physiological status and disease resistance of African catfish (Clarias gariepinus) cultured in glycerol-based biofloc systems. Aquaculture, 483: 120–130. Search in Google Scholar

Dawood M.A.O. (2021). Nutritional immunity of fish intestines: important insights for sustainable aquaculture. Rev. Aquac., 13: 642–663. Search in Google Scholar

Dawood M.A.O., Koshio S., Esteban M.Á. (2018). Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Rev. Aquac., 10: 950–974. Search in Google Scholar

de Morais A.P.M., Abreu P.C., Wasielesky W., Krummenauer D. (2020). Effect of aeration intensity on the biofilm nitrification process during the production of the white shrimp Litopenaeus vannamei (Boone, 1931) in Biofloc and clear water systems. Aquaculture, 514: 734516. Search in Google Scholar

De Schryver P., Crab R., Defoirdt T., Boon N., Verstraete W. (2008). The basics of bio-flocs technology: The added value for aquaculture. Aquaculture, 277: 125–137. Search in Google Scholar

De Sousa A.A., Pinho S.M., Rombenso A.N., de Mello G.L., Emerenciano M.G.C. (2019). Pizzeria by-product: A complementary feed source for Nile tilapia (Oreochromis niloticus) raised in biofloc technology? Aquaculture, 501: 359–367. Search in Google Scholar

De Souza D.M., Martins Á.C., Jensen L., Wasielesky W., Monserrat J.M., de Oliveira Garcia L. (2014 a). Effect of temperature on antioxidant enzymatic activity in the Pacific white shrimp Litopenaeus vannamei in a BFT (Biofloc technology) system. Marine Freshwater Behav. Physiol., 47: 1–10. Search in Google Scholar

De Souza D.M., Suita S.M., Romano L.A., Wasielesky W., Ballester E.L.C. (2014 b). Use of molasses as a carbon source during the nursery rearing of Farfantepenaeus brasiliensis (Latreille, 1817) in a Biofloc technology system. Aquac. Res., 45: 270–277. Search in Google Scholar

Deb S., Noori M.T., Rao P.S. (2020). Application of biofloc technology for Indian major carp culture (polyculture) along with water quality management. Aquac. Eng., 91: 102106. Search in Google Scholar

Delgado D.L.C., Rubio C.A., Quiroz V.A.C. (2020). Proximal and sensory analysis of red tilapia (Oreochromis sp.) fed with fish tanks sediments from a Biofloc culture. Food Sci. Technol., 41: 870–876. Search in Google Scholar

Deng M., Chen J., Gou J., Hou J., Li D., He X. (2018). The effect of different carbon sources on water quality, microbial community and structure of biofloc systems. Aquaculture, 482: 103–110. Search in Google Scholar

Diatin I., Shafruddin D., Hude N., Sholihah M., Mutsmir I. (2021). Production performance and financial feasibility analysis of farming catfish (Clarias gariepinus) utilizing water exchange system, aquaponic, and biofloc technology. J. Saudi Soc. Agric. Sci., 20: 344–351. Search in Google Scholar

Diaz H.A.A., Ramfrez A.P.M., Emerenciano M.G.C., Carrasco S.C.P. (2021). Organoleptic and nutritional characteristics of fillets of pirapitinga fed different protein sources in a biofloc system. Pesqui. Agropecuária Bras., 55: 2020. Search in Google Scholar

Ebrahimi A., Akrami R., Najdegerami E.H., Ghiasvand Z., Koohsari H. (2020). Effects of different protein levels and carbon sources on water quality, antioxidant status and performance of common carp (Cyprinus carpio) juveniles raised in biofloc based system. Aquaculture, 516: 734639. Search in Google Scholar

Ekasari J., Hanif Azhar M., Surawidjaja E.H., Nuryati S., De Schryver P., Bossier P. (2014). Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish Shellfish Immunol., 41: 332–339. Search in Google Scholar

Ekasari J., Rivandi D.R., Firdausi A.P., Surawidjaja E.H., Zairin M., Bossier P., De Schryver P. (2015). Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture, 441: 72–77. Search in Google Scholar

El-Hawarry W.N., Shourbela R.M., Haraz Y.G., Khatab S.A., Dawood M.A.O. (2021). The influence of carbon source on growth, feed efficiency, and growth-related genes in Nile tilapia (Oreochromis niloticus) reared under biofloc conditions and high stocking density. Aquaculture, 542: 736919. Search in Google Scholar

Emerenciano M., Ballester E.L.C., Cavalli R.O., Wasielesky W. (2011). Effect of biofloc technology (BFT) on the early postlarval stage of pink shrimp Farfantepenaeus paulensis: Growth performance, floc composition and salinity stress tolerance. Aquac. Int., 19: 891–901. Search in Google Scholar

Emerenciano M., Ballester E.L.C., Cavalli R.O., Wasielesky W. (2012). Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquac. Res., 43: 447–457. Search in Google Scholar

Emerenciano M., Cuzon G., Arévalo M., Mascaró Miquelajauregui M., Gaxiola G. (2013). Effect of short-term fresh food supplementation on reproductive performance, biochemical composition, and fatty acid profile of Litopenaeus vannamei (Boone) reared under biofloc conditions. Aquac. Int., 21: 987–1007. Search in Google Scholar

FAO (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action. Search in Google Scholar

FAO (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. FAO. Search in Google Scholar

Ferreira G.S., Bolívar N.C., Pereira S.A., Guertler C., do Nascimento Vieira F., Mouriño J.L.P., Seiffert W.Q. (2015). Microbial biofloc as source of probiotic bacteria for the culture of Litopenaeus vannamei. Aquaculture, 448: 273–279. Search in Google Scholar

Fleckenstein L.J., Tierney T.W., Ray A.J. (2018). Comparing biofloc, clear-water, and hybrid recirculating nursery systems (Part II): Tilapia (Oreochromis niloticus) production and water quality dynamics. Aquac. Eng., 82: 80–85. Search in Google Scholar

Fóes G.K., Fróes C., Krummenauer D., Poersch L., Wasielesky W. (2011). Nursery of pink shrimp farfantepenaeus paulensis in biofloc technology culture system: survival and growth at different stocking densities. J. Shellfish Res., 30: 367–373. Search in Google Scholar

Frankic A., Hershner C. (2003). Sustainable aquaculture: Developing the promise of aquaculture. Aquac. Int., 11: 517–530. Search in Google Scholar

Furtado P.S., Campos B.R., Serra F.P., Klosterhoff M., Romano L.A., Wasielesky W. (2015). Effects of nitrate toxicity in the Pacific white shrimp, Litopenaeus vannamei, reared with biofloc technology (BFT). Aquac. Int., 23: 315–327. Search in Google Scholar

Gaona C.A.P., Poersch L.H., Krummenauer D., Foes G.K., Wasielesky W.J. (2011). The effect of solids removal on water quality, growth and survival of Litopenaeus vannamei in a biofloc technology culture system. Int. J. Recirc. Aquac., 12. Search in Google Scholar

Gaona C.A.P., da Paz Serra F., Furtado P.S., Poersch L.H., Wasielesky W. (2016). Effect of different total suspended solids concentrations on the growth performance of Litopenaeus vannamei in a BFT system. Aquac. Eng., 72–73: 65–69. Search in Google Scholar

Gaona C.A.P., de Almeida M.S., Viau V., Poersch L.H., Wasielesky W. (2017). Effect of different total suspended solids levels on a Litopenaeus vannamei (Boone, 1931) BFT culture system during biofloc formation. Aquac. Res., 48: 1070–1079. Search in Google Scholar

Goldman J.C., Caron D.A., Dennett M.R. (1987). Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C: N ratio. Limnol. Oceanogr., 32: 1239–1252. Search in Google Scholar

Gutierrez-Wing M.T., Malone R.F. (2006). Biological filters in aquaculture: Trends and research directions for freshwater and marine applications. Aquac. Eng., 34: 163–171. Search in Google Scholar

Hargreaves J.A. (2006). Photosynthetic suspended-growth systems in aquaculture. Aquac. Eng., 34: 344–363. Search in Google Scholar

Hargreaves J.A. (2013). Biofloc production systems for aquaculture. South. Reg. Aquac. Cent., 4503. Search in Google Scholar

Harun A.A.C., Mohammad N.A.H., Ikhwanuddin M., Jauhari I., Sohaili J., Kasan N.A. (2019). Effect of different aeration units, nitrogen types and inoculum on biofloc formation for improvement of Pacific Whiteleg shrimp production. Egypt. J. Aquat. Res., 45: 287–292. Search in Google Scholar

Hoang M.N., Nguyen P.N., Bossier P. (2020). Water quality, animal performance, nutrient budgets and microbial community in the biofloc-based polyculture system of white shrimp, Litopenaeus vannamei and gray mullet, Mugil cephalus. Aquaculture, 515: 734610. Search in Google Scholar

Hollender J., Van der Krol D., Kornberger L., Gierden E., Dott W. (2002). Effect of different carbon sources on the enhanced biological phosphorus removal in a sequencing batch reactor. World J. Microbiol. Biotechnol., 18: 355–360. Search in Google Scholar

Hostins B., Braga A., Lopes D.L.A., Wasielesky W., Poersch L.H. (2015). Effect of temperature on nursery and compensatory growth of pink shrimp Farfantepenaeus brasiliensis reared in a super-intensive biofloc system. Aquac. Eng., 66: 62–67. Search in Google Scholar

Hostins B., Wasielesky W., Decamp O., Bossier P., De Schryver P. (2019). Managing input C/N ratio to reduce the risk of Acute Hepatopancreatic Necrosis Disease (AHPND) outbreaks in biofloc systems – A laboratory study. Aquaculture, 508: 60–65. Search in Google Scholar

Huerta-Rábago J.A., Martínez-Porchas M., Miranda-Baeza A., Nieves-Soto M., Rivas-Vega M. E., Martínez-Córdova L.R. (2019). Addition of commercial probiotic in a biofloc shrimp farm of Litopenaeus vannamei during the nursery phase: Effect on bacterial diversity using massive sequencing 16S rRNA. Aquaculture, 502: 391–399. Search in Google Scholar

Hussain A., Ali E., Sallam W., Hussain A.S., Mohammad D.A., Ali E.M., Sallam W.S. (2015). Growth Performance of the green tiger shrimp Penaeus semisulcatus raised in biofloc systems air quality modelling view project. J. Aquac. Mar. Biol., 2. Search in Google Scholar

Kamilya D., Debbarma M., Pal P., Kheti B., Sarkar S., Singh S.T. (2017). Biofloc technology application in indoor culture of Labeo rohita (Hamilton, 1822) fingerlings: The effects on inorganic nitrogen control, growth and immunity. Chemosphere, 182: 8–14. Search in Google Scholar

Kathia C.M., Carmen M.D., Aida H.P., Jorgey C.M., Daniel B.-C. (2017). Probiotics used in Biofloc system for fish and crustacean culture: A review. Int. J. Fish. Aquat. Stud., 5: 120–125. Search in Google Scholar

Kaya D., Genc M.A., Aktas M., Eroldogan O.T., Aydin F.G., Genc E. (2019 a). Effects of Biofloc Technology (BFT) on Growth of Speckled Shrimp (Metapenaeus monoceros). Tarım Bilim. Derg., 25: 491–497. Search in Google Scholar

Kaya D., Genc M.A., Aktas M., Yavuzcan H., Ozmen O., Genc E. (2019 b). Effect of biofloc technology on growth of speckled shrimp, Metapenaeus monoceros (Fabricus) in different feeding regimes. Aquac. Res., 50: 2760–2768. Search in Google Scholar

Khanjani M.H., Sharifinia M. (2020). Biofloc technology as a promising tool to improve aquaculture production. Rev. Aquac., 12: 1836–1850. Search in Google Scholar

Khatoon H., Banerjee S., Guan Yuan G.T., Haris N., Ikhwanuddin M., Ambak M.A., Endut A. (2016). Biofloc as a potential natural feed for shrimp postlarvae. Int. Biodeterior. Biodegrad., 113: 304–309. Search in Google Scholar

Kim S.K., Guo Q., Jang I.K. (2015). Effect of biofloc on the survival and growth of the postlarvae of three penaeids (Litopenaeus Vannamei, Fenneropenaeus Chinensis, and Marsupenaeus Japonicus) and their biofloc feeding efficiencies, as related to the morphological structure of the third maxilliped. J. Crustac. Biol., 35: 41–50. Search in Google Scholar

Kim S.K., Jang I.K., Kim S.R., Jeon J.C., Kim S.K. (2021). Effects of artificial substrates on the growth and immunology of postlarvae of Marsupenaeus japonicus (Spence Bate, 1888) (Decapoda: Dendrobranchiata: Penaeidae) reared in biofloc. J. Crustac. Biol., 41: ruab044. Search in Google Scholar

Krummenauer D., Peixoto S., Cavalli R.O., Poersch L.H., Wasielesky W. (2011). Superintensive culture of white shrimp, Litopenaeus vannamei, in a biofloc technology system in Southern Brazil at different stocking densities. J. World Aquac. Soc., 42: 726–733. Search in Google Scholar

Krummenauer D., Samocha T., Poersch L., Lara G., Wasielesky W. (2014). The reuse of water on the culture of pacific white shrimp, litopenaeus vannamei, in BFT system. J. World Aquac. Soc., 45: 3–14. Search in Google Scholar

Kuhn D.D., Lawrence A.L., Boardman G.D., Patnaik S., Marsh L., Flick G.J. (2010). Evaluation of two types of bioflocs derived from biological treatment of fish effluent as feed ingredients for Pacific white shrimp, Litopenaeus vannamei. Aquaculture, 303: 28–33. Search in Google Scholar

Kumar S.V., Pandey P.K., Anand T., Bhuvaneswari G.R., Dhinakaran A., Kumar S. (2018). Biofloc improves water, effluent quality and growth parameters of Penaeus vannamei in an intensive culture system. J. Environ. Manage., 215: 206–215. Search in Google Scholar

Kumari S., Harikrishna V., Surasani V.K.R., Balange A.K., Babitha Rani A.M. (2021). Growth, biochemical indices and carcass quality of red tilapia reared in zero water discharge based biofloc system in various salinities using inland saline ground water. Aquaculture, 540: 736730. Search in Google Scholar

Kurtoğlu İ.Z., Ak K., Genç S. (2021). Effects of stocking density during live transportation on haematological parameters of Siberian sturgeon (Acipenser baerii, Brandt, 1869). J. Appl. Ichthyol., 37: 809–815. Search in Google Scholar

Laice L.M., Corrêa Filho R.A.C., Ventura A.S., Farias K.N.N., do Nascimento Silva A.L., Fernandes C.E., Silva A.C.F., Barbosa P.T.L., de Souza A.I., Emerenciano M.G.C., Povh J.A. (2021). Use of symbiotics in biofloc (BFT)-based Nile tilapia culture: Production performance, intestinal morphometry and hematological parameters. Aquaculture, 530: 735715. Search in Google Scholar

Lara G., Hostins B., Bezerra A., Poersch L., Wasielesky W. (2017 a). The effects of different feeding rates and re-feeding of Litopenaeus vannamei in a biofloc culture system. Aquac. Eng., 77: 20–26. Search in Google Scholar

Lara G., Krummenauer D., Abreu P.C., Poersch L.H., Wasielesky W. (2017 b). The use of different aerators on Litopenaeus vannamei biofloc culture system: effects on water quality, shrimp growth and biofloc composition. Aquac. Int., 25: 147–162. Search in Google Scholar

Liang W., Luo G., Tan H., Ma N., Zhang N., Li L. (2014). Efficiency of biofloc technology in suspended growth reactors treating aquacultural solid under intermittent aeration. Aquac. Eng., 59: 41–47. Search in Google Scholar

Lim L.C., Dhert P., Sorgeloos P. (2003). Recent developments in the application of live feeds in the freshwater ornamental fish culture. Aquaculture, 227: 319–331. Search in Google Scholar

Lim Y.S., Ganesan P., Varman M., Hamad F.A., Krishnasamy S. (2021). Effects of microbubble aeration on water quality and growth performance of Litopenaeus vannamei in biofloc system. Aquac. Eng., 93: 102159. Search in Google Scholar

Lima P.C.M., Abreu J.L., Silva A.E.M., Severi W., Galvez A.O., Brito L.O. (2018). Nile tilapia fingerling cultivated in a low-salinity biofloc system at different stocking densities. Spanish J. Agric. Res., 16: e0612–e0612. Search in Google Scholar

Liu G., Ye Z., Liu D., Zhao J., Sivaramasamy E., Deng Y., Zhu S. (2018). Influence of stocking density on growth, digestive enzyme activities, immune responses, antioxidant of Oreochromis niloticus fingerlings in biofloc systems. Fish Shellfish Immunol., 81: 416–422. Search in Google Scholar

Liu H., Li H., Wei H., Zhu X., Han D., Jin J., Yang Y., Xie S. (2019). Biofloc formation improves water quality and fish yield in a freshwater pond aquaculture system. Aquaculture, 506: 256–269. Search in Google Scholar

Luo G., Gao Q., Wang C., Liu W., Sun D., Li L., Tan H. (2014). Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, 422–423: 1–7. Search in Google Scholar

Luo G., Liu Z., Shao L., Tan H. (2019). Using poly-β-hydroxybutyric as an additional carbohydrate for biofloc in a shrimp Litopenaeus vannamei bioflocs nursery system with brackish water. Aquaculture, 506: 181–187. Search in Google Scholar

Mahanand S.S., Moulick S., Rao P.S. (2013). Water quality and growth of rohu, Labeo rohita, in a biofloc system. J. Appl. Aquac., 25: 121–131. Search in Google Scholar

Mansour A.T., Esteban M.Á. (2017). Effects of carbon sources and plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol., 64: 202–209. Search in Google Scholar

Manzoor P.S., Rawat K.D., Tiwari V.K., Poojary N., Asanaru Majeedkutty B.R. (2020). Dietary lipid influences gonadal maturation, digestive enzymes and serum biochemical indices of Cyprinus carpio reared in biofloc system. Aquac. Res., 51: 3244–3254. Search in Google Scholar

Martinez-Porchas M., Ezquerra-Brauer M., Mendoza-Cano F., Chan-Higuera J.E., Vargas-Albores F., Martinez-Cordova L.R. (2020). Effect of supplementing heterotrophic and photoautotrophic biofloc, on the production response, physiological condition and post-harvest quality of the whiteleg shrimp, Litopenaeus vannamei. Aquac. Reports, 16: 100257. Search in Google Scholar

Martins C.I.M., Eding E.H., Verdegem M.C.J., Heinsbroek L.T.N., Schneider O., Blancheton J.P., d’Orbcastel E.R., Verreth J.A.J. (2010). New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquac. Eng., 43: 83–93. Search in Google Scholar

Megahed M.E. (2010). The effect of microbial biofloc on water quality, survival and growth of the green tiger shrimp (Penaeus Semisulcatus) fed with different crude protein levels. J. Arab. Aquac. Soc., 5: 119–142. Search in Google Scholar

Menaga M., Felix S., Charulatha M., Gopalakannan A., Panigrahi A. (2019). Effect of in-situ and ex-situ biofloc on immune response of genetically improved farmed Tilapia. Fish Shellfish Immunol., 92: 698–705. Search in Google Scholar

Minaz M., Kubilay A. (2021). Operating parameters affecting biofloc technology: carbon source, carbon/nitrogen ratio, feeding regime, stocking density, salinity, aeration, and microbial community manipulation. Aquac. Int., 29: 1121–1140. Search in Google Scholar

Minaz M., Ak K., Kurtoğlu İ.Z. (2021). Occupational health and safety risk analysis in trout aquaculture facility. OHS Acad. İş Sağlığı ve Güvenliği Akad. Derg., 4: 14–21. Search in Google Scholar

Najdegerami E.H., Bakhshi F., Lakani F.B. (2016). Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero-water exchange system. Fish Physiol. Biochem., 42: 457–465. Search in Google Scholar

Naylor R.L., Goldburg R.J., Primavera J.H., Kautsky N., Beveridge M.C.M., Clay J., Folke C., Lubchenco J., Mooney H., Troell M. (2000). Effect of aquaculture on world fish supplies. Nature, 405: 1017–1024. Search in Google Scholar

Oehmen A., Yuan Z., Blackall L.L., Keller J. (2004). Short-term effects of carbon source on the competition of polyphosphate accumulating organisms and glycogen accumulating organisms. Water Sci. Technol., 50: 139–144. Search in Google Scholar

Panigrahi A., Saranya C., Sundaram M., Vinoth Kannan S.R., Das R.R., Satish Kumar R., Rajesh P., Otta S.K. (2018). Carbon: Nitrogen (C:N) ratio level variation influences microbial community of the system and growth as well as immunity of shrimp (Litopenaeus vannamei) in biofloc based culture system. Fish Shellfish Immunol., 81: 329–337. Search in Google Scholar

Panigrahi A., Sundaram M., Saranya C., Swain S., Dash R.R., Dayal J.S. (2019). Carbohydrate sources deferentially influence growth performances, microbial dynamics and immunomodulation in Pacific white shrimp (Litopenaeus vannamei) under biofloc system. Fish Shellfish Immunol., 86: 1207–1216. Search in Google Scholar

Panigrahi A., Das R.R., Sivakumar M.R., Saravanan A., Saranya C., Sudheer N.S., Kumaraguru Vasagam K.P., Mahalakshmi P., Kannappan S., Gopikrishna G. (2020 a). Bio-augmentation of heterotrophic bacteria in biofloc system improves growth, survival, and immunity of Indian white shrimp Penaeus indicus. Fish Shellfish Immunol., 98: 477–487. Search in Google Scholar

Panigrahi A., Sivakumar M.R., Sundaram M., Saravanan A., Das R.R., Katneni V.K., Ambasankar K., Syama Dayal J., Gopikrishna G. (2020 b). Comparative study on phenoloxidase activity of biofloc-reared pacific white shrimp Penaeus vannamei and Indian white shrimp Penaeus indicus on graded protein diet. Aquaculture, 518: 734654. Search in Google Scholar

Panigrahi A., Esakkiraj P., Das R.R., Saranya C., Vinay T.N., Otta S.K., Shekhar M.S. (2021). Bioaugmentation of biofloc system with enzymatic bacterial strains for high health and production performance of Penaeus indicus. Sci. Rep., 11: 1–13. Search in Google Scholar

Pérez-Fuentes J.A., Hernández-Vergara M.P., Pérez-Rostro C.I., Fogel I. (2016). C:N ratios affect nitrogen removal and production of Nile tilapia Oreochromis niloticus raised in a biofloc system under high density cultivation. Aquaculture, 452: 247–251. Search in Google Scholar

Piedrahita R.H. (2003). Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture, 226: 35–44. Search in Google Scholar

Pinho S.M., Emerenciano M.G.C. (2021). Sensorial attributes and growth performance of whiteleg shrimp (Litopenaeus vannamei) cultured in biofloc technology with varying water salinity and dietary protein content. Aquaculture, 540: 736727. Search in Google Scholar

Ponce-Palafox J.T., Pavia Á.A., Mendoza López D.G., Arredondo-Figueroa J.L., Lango-Reynoso F., Castañeda-Chávez M. del R., Esparza-Leal H., Ruiz-Luna A., Páez-Ozuna F., Castillo-Vargasmachuca S.G., Peraza-Gómez V. (2019). Response surface analysis of temperature-salinity interaction effects on water quality, growth and survival of shrimp Penaeus vannamei postlarvae raised in biofloc intensive nursery production. Aquaculture, 503: 312–321. Search in Google Scholar

Putra I., Rusliadi R., Fauzi M., Tang U.M., Muchlisin Z.A. (2017). Growth performance and feed utilization of African catfish Clarias gariepinus fed a commercial diet and reared in the biofloc system enhanced with probiotic. F1000Res., 6: 1545. Search in Google Scholar

Qiao G., Zhang M., Li Y., Xu C., Xu D. H., Zhao Z., Zhang J., Li Q. (2018). Biofloc technology (BFT): An alternative aquaculture system for prevention of Cyprinid herpesvirus 2 infection in gibel carp (Carassius auratus gibelio). Fish Shellfish Immunol., 83: 140–147. Search in Google Scholar

Romano N., Dauda A.B., Ikhsan N., Karim M., Kamarudin M.S. (2018). Fermenting rice bran as a carbon source for biofloc technology improved the water quality, growth, feeding efficiencies, and biochemical composition of African catfish Clarias gariepinus juveniles. Aquac. Res., 49: 3691–3701. Search in Google Scholar

Romero J., Feijoo C.G., Navarrete P. (2012). Antibiotics in aquaculture – use, abuse and alternatives. In: Health and environment in aquaculture, Carvalho E. (ed.). IntechOpen, pp. 159–198. Search in Google Scholar

Roques S., Deborde C., Richard N., Skiba-Cassy S., Moing A., Fauconneau B. (2020). Metabolomics and fish nutrition: a review in the context of sustainable feed development. Rev. Aquac., 12: 261–282. Search in Google Scholar

Schneider O., Sereti V., Eding E.H., Verreth J.A.J. (2005). Analysis of nutrient flows in integrated intensive aquaculture systems. Aquac. Eng., 32: 379–401. Search in Google Scholar

Schveitzer R., Arantes R., Costódio P.F.S., do Espírito Santo C.M., Arana L.V., Seiffert W.Q., Andreatta E.R. (2013). Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquac. Eng., 56: 59–70. Search in Google Scholar

Seixas S., Saravanan S., Gonçalves S. (2015). Innovation and educational changes: two e-Learning cases in aquaculture. Aquac. Int., 23: 843–859. Search in Google Scholar

Sgnaulin T., Pinho S.M., Durigon E.G., Thomas M.C., de Mello G.L., Emerenciano M.G.C. (2021). Culture of pacu Piaractus mesopotamicus in biofloc technology (BFT): insights on dietary protein sparing and stomach content. Aquac. Int., 29: 2319–2335. Search in Google Scholar

Sharifinia M., Taherizadeh M., Namin J.I., Kamrani E. (2018). Ecological risk assessment of trace metals in the surface sediments of the Persian Gulf and Gulf of Oman: Evidence from subtropical estuaries of the Iranian coastal waters. Chemosphere, 191: 485–493. Search in Google Scholar

Silva T.S., Piana P.A. (2020). Production of tilapia in biofloc with different salt condictions: An evaluation of body composition and organoleptic properties. Bol. Do Inst. Pesca, 46. Search in Google Scholar

Souza R.L. de, Lima E.C.R. de, Melo F.P. de, Ferreira M.G.P., Correia E. de S. (2019). The culture of Nile tilapia at different salinities using a biofloc system. Rev. Ciência Agronômica, 50. Search in Google Scholar

Sutthi N., Thaimuangphol W., Rodmongkoldee M., Leelapatra W., Panase P. (2018). Growth performances, survival rate, and biochemical parameters of Nile tilapia (Oreochromis niloticus) reared in water treated with probiotic. Comp. Clin. Pathol., 27: 597–603. Search in Google Scholar

Tabarrok M., Seyfabadi J., Salehi Jouzani G., Younesi H. (2020). Comparison between recirculating aquaculture and biofloc systems for rearing juvenile common carp (Cyprinus carpio): Growth performance, haemato-immunological indices, water quality and microbial communities. Aquac. Res., 51: 4881–4892. Search in Google Scholar

Taw N. (2010). Biofloc technology expanding at white shrimp farms. Glob. Aquac. Advocate, 20–22. Search in Google Scholar

Timmonsand M., Ebeling J.M. (2010). Recirculating aquaculture, 2nd ed. (Cayuga Aqua Ventures). Ithaca. Search in Google Scholar

Touiri L., Najjar F. . Z., Rolle F., Crespi V. (2020). Aquaculture capacity development in morocco through the establishment of an aquaculture demonstration center for the training of qualified personnel. FAO Aquac. Newsl., 62: 32–34. Search in Google Scholar

Turcios A.E., Papenbrock J. (2014). Sustainable treatment of aquaculture effluents-What can we learn from the past for the future? Sustain., 6: 836–856. Search in Google Scholar

Vadhel N., Pathan J., Shrivastava V., Akolkar N., Kumar S., Misra C.K., Das Mahapatra K. (2020). Comparative study on the performance of genetically improved rohu “Jayanti” and native rohu, Labeo rohita fingerlings reared in biofloc system. Aquaculture, 523: 735201. Search in Google Scholar

Valderrama D., Hishamunda N., Zhou X. (2010). Estimating employment in world aquaculture. FAO Aquac. Newsl., 24–25. Search in Google Scholar

Van Doan H., Lumsangkul C., Hoseinifar S.H., Jaturasitha S., Tran H.Q., Chanbang Y., Ringø E., Stejskal V. (2022). Influences of spent coffee grounds on skin mucosal and serum immunities, disease resistance, and growth rate of Nile tilapia (Oreochromis niloticus) reared under biofloc system. Fish Shellfish Immunol., 120: 67–74. Search in Google Scholar

Vasava R., Hodar A.R., Elchelwar V.R., Deepak A.P., Patel K.M., Shrivastava V., Yusufzai S.I., Acharya P., Prabhakar P. (2020). Biofloc technology: An innovative approach to zero-water exchange and tentative zero-feed system: A review. J. Entomol. Zool. Stud., 8: 1036–1040. Search in Google Scholar

Vinatea L., Malpartida J., Carbó R., Andree K.B., Gisbert E., Estévez A. (2018). A comparison of recirculation aquaculture systems versus biofloc technology culture system for on-growing of fry of Tinca tinca (Cyprinidae) and fry of grey Mugil cephalus (Mugilidae). Aquaculture, 482: 155–161. Search in Google Scholar

Waite R., Beveridge M., Brummett R., Castine S., Chaiyawannakarn N., Kaushik S., Mungkung R., Nawapakpilai S., Phillips M. (2014). Improving productivity and environmental performance of aquaculture. WorldFish. Search in Google Scholar

Wang C., Pan L., Zhang K., Xu W., Zhao D., Mei L. (2016). Effects of different carbon sources addition on nutrition composition and extracellular enzymes activity of bioflocs, and digestive enzymes activity and growth performance of Litopenaeus vannamei in zero-exchange culture tanks. Aquac. Res., 47: 3307–3318. Search in Google Scholar

Wang G., Yu E., Xie J., Yu D., Li Z., Luo W., Qiu L., Zheng Z. (2015). Effect of C/N ratio on water quality in zero-water exchange tanks and the biofloc supplementation in feed on the growth performance of crucian carp, Carassius auratus. Aquaculture, 443: 98–104. Search in Google Scholar

Webster C.D., Lim C.E. (2002). Nutrient requirements and feeding of finfish for aquaculture. CABI. Search in Google Scholar

Wei Y.F., Liao S.A., Wang A. (2016). The effect of different carbon sources on the nutritional composition, microbial community and structure of bioflocs. Aquaculture, 465: 88–93. Search in Google Scholar

Wilén B.M., Lund Nielsen J., Keiding K., Nielsen P.H. (2000). Influence of microbial activity on the stability of activated sludge flocs. Coll. Surf. B Biointerfaces, 18: 145–156. Search in Google Scholar

World Bank. (2013). Fish to 2030: Prospects for Fisheries and Aquaculture. Xu W.J., Pan L.Q. (2013). Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input. Aquaculture, 412–413: 117–124. Search in Google Scholar

Xu W.J., Morris T.C., Samocha T.M. (2016). Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture, 453: 169–175. Search in Google Scholar

Yazıcı İ.S., Hisar O., Yilmaz S., Yiğit M. (2015). Effects of different probiotic bacteria on growth, body composition, immune response and hematological parameters of rainbow trout (Oncorhynchus mykiss) under sublethal water temperature. Mar. Sci. Technol. Bull., 4: 21–28. Search in Google Scholar

Yu Z., Li L., Zhu R., Li M., Duan J., Wang J. Y., Liu Y. H., Wu L. F. (2020). Monitoring of growth, digestive enzyme activity, immune response and water quality parameters of Golden crucian carp (Carassius auratus) in zero-water exchange tanks of biofloc systems. Aquac. Rep., 16: 100283. Search in Google Scholar

Zhang N., Luo G., Tan H., Liu W., Hou Z. (2016). Growth, digestive enzyme activity and welfare of tilapia (Oreochromis niloticus) reared in a biofloc-based system with poly-β-hydroxybutyric as a carbon source. Aquaculture, 464: 710–717. Search in Google Scholar

Zhao F., Yang W., Zeng Z., Li H., Yang X., He Z., Gu B., Rafiq M. T., Peng H. (2012). Nutrient removal efficiency and biomass production of different bioenergy plants in hypereutrophic water. Biomass Bioenergy, 42: 212–218. Search in Google Scholar

Articoli consigliati da Trend MD