Dettagli della rivista
Prima pubblicazione
25 Nov 2011
Frequenza di pubblicazione
4 volte all'anno
Accesso libero

Potential of Paulownia leaves silage in lamb diet to improve ruminal fermentation and fatty acid profile – an in vitro study

Pubblicato online: 12 Jul 2023
Volume & Edizione: AHEAD OF PRINT
Pagine: -
Ricevuto: 16 Apr 2023
Accettato: 22 May 2023
Dettagli della rivista
Prima pubblicazione
25 Nov 2011
Frequenza di pubblicazione
4 volte all'anno

Al-Marzooqi W., Sallam S.M., Alqaisi O., El-Zaiat H.M. (2022). Potential of graded doses of neem seed oil on ruminal fermentation characteristics, degradability, and methane formation. Ann. Animal Sci., 22: 993–999. Search in Google Scholar

Alagawany M., Farag M.R., Sahfi M.E., Elnesr S.S., Alqaisi O., El-Kassas S., Al-Wajeeh A.S., Taha A.E., Abd E-Hack M.E. (2022). Phytochemical characteristics of Paulownia trees wastes and its use as unconventional feedstuff in animal feed. Animal Biotech., 33: 586–593. Search in Google Scholar

Alayón-Gamboa J., Albores-Moreno S., Jiménez-Ferrer G., Alarcón-Zúñiga B., Miranda-Romero L., Pérez-Luna E., Canul-Solís J. (2023). Tropical tree foliage supplementation in ruminants improves rumen fermentation and the bacterial profile and decreases methane production. Animal Biotech., 1–13. Search in Google Scholar

Ammar H., Kholif A.E., Missaoui M., Zoabi H., Ghzayel S., de Haro-Martí M., de Almeida Teixeira I.A.M., Fkiri S., Khouja M.L., Fahmy M. (2023). Seasonal variation in chemical composition, ruminal fermentation, and biological characteristics of paulownia shan tong: in vitro potential use by sheep and goats. Fermentation, 9: 210. Search in Google Scholar

Becker F., Spengler K., Reinicke F., Heider-van Diepen C. (2023). Impact of essential oils on methane emissions, milk yield, and feed efficiency and resulting influence on the carbon footprint of dairy production systems. Environ. Sci. Pollut. Res., 30: 1–13. Search in Google Scholar

Bryszak M., Szumacher-Strabel M., El-Sherbiny M., Stochmal A., Oleszek W., Roj E., Patra A.K., Cieslak A. (2019). Effects of berry seed residues on ruminal fermentation, methane concentration, milk production, and fatty acid proportions in the rumen and milk of dairy cows. J. Dairy Sci., 102: 1257–1273. Search in Google Scholar

Carreño D., Hervás G., Toral P.G., Belenguer A., Frutos P. (2015). Ability of different types and doses of tannin extracts to modulate in vitro ruminal biohydrogenation in sheep. Anim. Feed Sci. Tech., 202: 42–51. Search in Google Scholar

Choudhury P.K., Salem A.Z.M., Jena R., Kumar S., Singh R., Puniya A.K. (2015). R. microbio. Rumen microbiology: from evolution to revolution, 3–16. Search in Google Scholar

Cieslak A., Zmora P., Matkowski A., Nawrot-Hadzik I., Pers-Kamczyc E., El-Sherbiny M., Bryszak M., Szumacher-Strabel M. (2016). Tannins from Sanguisorba officinalis affect in vitro rumen methane production and fermentation. J. Anim. Plant Sci., 26: 54–62. Search in Google Scholar

Costa E.d.S., Ribeiro C.D.M., Silva T., Batista A., Vieira J., Barbosa A., da Silva Júnior J., Bezerra L., Pereira E., Oliveira R. (2021). Effect of dietary condensed tannins inclusion from Acacia mearnsii extract on the growth performance, carcass traits and meat quality of lambs. Livest. Sci., 253: 104717. Search in Google Scholar

Daley C.A., Abbott A., Doyle P.S., Nader G.A., Larson S. (2010). A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutrition J., 9: 1–12. Search in Google Scholar

Devendra, Leng R. (2011). Feed resources for animals in Asia: issues, strategies for use, intensification and integration for increased productivity. Asian-Austr. J. Animal Sci., 24: 303–321. Search in Google Scholar

FAO (2019). FAOSTAT (Food and Agriculture Organization of the United Nations Statistics Division). Statistical Database of the Food and Agriculture Organization of the United Nations. 2019. Available online: http://www.fao.org/faostat/en/?#data/GE (accessed on 8 June 2019). Search in Google Scholar

Fernandes J., Pereira Filho J., Menezes D., Caldas A.C., Cavalcante I., Oliveira J., Oliveira R., Júnior J.S., Cézar M., Bezerra L. (2021). Carcass and meat quality in lambs receiving natural tannins from Mimosa tenuiflora hay. S. Ruminant Res., 198: 106362. Search in Google Scholar

Frutos P., Hervás G., Natalello A., Luciano G., Fondevila M., Priolo A., Toral P.G. (2020). Ability of tannins to modulate ruminal lipid metabolism and milk and meat fatty acid profiles. Anim. Feed Sci. Tech., 269: 114623. Search in Google Scholar

Golbotteh M.M., Malecky M., Aliarabi H., Zamani P., Ganjkhanlou M. (2022). Dose-response effects of the Savory (Satureja khuzistanica) essential oil and extract on rumen fermentation characteristics, microbial protein synthesis and methane production in vitro. Ann. Anim. Sci., 22: 1001–1014. Search in Google Scholar

Huang H., Szumacher-Strabel M., Patra A.K., Ślusarczyk S., Lechniak D., Vazirigohar M., Varadyova Z., Kozłowska M., Cieślak A. (2021). Chemical and phytochemical composition, in vitro ruminal fermentation, methane production, and nutrient degradability of fresh and ensiled Paulownia hybrid leaves. Anim. Feed Sci. Tech., 279: 115038. Search in Google Scholar

Huang H., Lechniak D., Szumacher-Strabel M., Patra A.K., Kozłowska M., Kolodziejski P., Gao M., Ślusarczyk S., Petrič D., Cieslak A. (2022). The effect of ensiled paulownia leaves in a high-forage diet on ruminal fermentation, methane production, fatty acid composition, and milk production performance of dairy cows. J. Anim. Sci. Biotech., 13: 1–19. Search in Google Scholar

Jalal H., Giammarco M., Lanzoni L., Akram M.Z., Mammi L.M., Vignola G., Chincarini M., Formigoni A., Fusaro I. (2023). Potential of fruits and vegetable by-products as an alternative feed source for sustainable ruminant nutrition and production: a review. Agriculture, 13: 286. Search in Google Scholar

Joch M., Vadroňová M., Výborná A., Jochová K. (2022). Inhibition of in vitro rumen methane production by three statins. Ann. Anim. Sci., 22: 271–282. Search in Google Scholar

Kawęcka A., Radkowska I. (2022). Comparison of the quality of mountain sheep milk obtained from animals kept on a natural and organic mountain pasture. Ann. Anim. Sci., 23: 275–283. Search in Google Scholar

Kearns M., Ponnampalam E.N., Jacquier J.-C., Grasso S., Boland T.M., Sheridan H., Monahan F.J. (2022). Can botanically-diverse pastures positively impact the nutritional and antioxidant composition of ruminant meat? – Invited review. Meat Sci., 197: 109055. Search in Google Scholar

Khiaosa-Ard R., Bryner S., Scheeder M., Wettstein H.-R., Leiber F., Kreuzer M., Soliva C. (2009). Evidence for the inhibition of the terminal step of ruminal α-linolenic acid biohydrogenation by condensed tannins. J. Dairy Sci., 92: 177–188. Search in Google Scholar

Latimer H.A. (2007). Official Methods of Analysis of the Association of Official Analytical Chemists International (18th ed.), Horwitz W., Latimer W. (eds). AOAC International, MD, Gaithersburg. Search in Google Scholar

Mahesh M., Mohini M. (2014). Crop residues for sustainable livestock production. Adv. Dairy Res., 2: 1–2. Search in Google Scholar

Mazurkiewicz J. (2022). The biogas potential of oxytree leaves. Energies, 15: 8872. Search in Google Scholar

McClements D.J. (2020). Future foods: Is it possible to design a healthier and more sustainable food supply? Nutr. Bull., 45: 341–354. Search in Google Scholar

Mezzomo R., Paulino P., Detmann E., Valadares Filho S., Paulino M., Monnerat J., Duarte M., Silva L., Moura L. (2011). Influence of condensed tannin on intake, digestibility, and efficiency of protein utilization in beef steers fed high concentrate diet. Livest. Sci., 141: 1–11. Search in Google Scholar

Milićević D., Vranić D., Mašić Z., Parunović N., Trbović D., Nedeljković-Trailović J., Petrović Z. (2014). The role of total fats, saturated/unsaturated fatty acids and cholesterol content in chicken meat as cardiovascular risk factors. Lip. Health Dis., 13: 1–12. Search in Google Scholar

Moate P., Deighton M., Jacobs J., Ribaux B., Morris G., Hannah M., Mapleson D., Islam M., Wales W., Williams S. (2020). Influence of proportion of wheat in a pasture-based diet on milk yield, methane emissions, methane yield, and ruminal protozoa of dairy cows. J. Dairy Sci., 103: 2373–2386. Search in Google Scholar

Navarrete S., Kemp P.D., Pain S.J., Back P.J. (2016). Bioactive compounds, aucubin and acteoside, in plantain (Plantago lanceolata L.) and their effect on in vitro rumen fermentation. Anim. Feed Sci. Tech., 222: 158–167. Search in Google Scholar

Newbold C.J., De la Fuente G., Belanche A., Ramos-Morales E., McEwan N.R. (2015). The role of ciliate protozoa in the rumen. Front. Microbiol., 6: 1313. Search in Google Scholar

Patra A.K. (2012). An overview of antimicrobial properties of different classes of phytochemicals. Diet. Phytochem. Microb., 1–32. Search in Google Scholar

Patra A.K., Yu Z. (2015). Effects of adaptation of in vitro rumen culture to garlic oil, nitrate, and saponin and their combinations on methanogenesis, fermentation, and abundances and diversity of microbial populations. Front. Microbiol., 6: 1434. Search in Google Scholar

Pers-Kamczyc E., Zmora P., Cieslak A., Szumacher-Strabel M. (2011). Development of nucleic acid based techniques and possibilities of their application to rumen microbial ecology research. J. Anim. Feed Sci., 20: 315–337. Search in Google Scholar

Petrič D., Mravčáková D., Kucková K., Čobanová K., Kišidayová S., Cieslak A., Ślusarczyk S., Váradyová Z. (2020). Effect of dry medicinal plants (wormwood, chamomile, fumitory and mallow) on in vitro ruminal antioxidant capacity and fermentation patterns of sheep. J. Anim. Physiol. Anim. Nutr., 104: 1219–1232. Search in Google Scholar

Piluzza G., Sulas L., Bullitta S. (2014). Tannins in forage plants and their role in animal husbandry and environmental sustainability: a review. G. Forage Sci., 69: 32–48. Search in Google Scholar

Puchalska J., Szumacher-Strabel M., Patra A.K., Ślusarczyk S., Gao M., Petrič D., Nabzdyk M., Cieślak A. (2021). The effect of different concentrations of total polyphenols from Paulownia hybrid leaves on ruminal fermentation, methane production and microorganisms. Animal, 11: 2843. Search in Google Scholar

Purba R.A.P., Paengkoum P., Paengkoum S. (2020). The links between supplementary tannin levels and conjugated linoleic acid (CLA) formation in ruminants: A systematic review and meta-analysis. PLoS One., 15: e0216187. Search in Google Scholar

Rapisarda S., Abu-Ghannam N. (2023). Polyphenol characterization and antioxidant capacity of multi-species swards grown in Ireland – environmental sustainability and nutraceutical potential. Sustainability, 15: 634. Search in Google Scholar

Röös E., Bajželj B., Smith P., Patel M., Little D., Garnett T. (2017). Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. G. Environ. Chan., 47: 1–12. Search in Google Scholar

Shapiro S.S., Wilk M.B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52: 591–611. Search in Google Scholar

Sinz S., Kunz C., Liesegang A., Braun U., Marquardt S., Soliva C.R., Kreuzer M. (2018). In vitro bioactivity of various pure flavonoids in ruminal fermentation, with special reference to methane formation. Czech J. Animal Sci., 63: 293–304. Search in Google Scholar

Stahl D., Amann R., Poulsen L., Raskin L., Capman W. (1995). Use of fluorescent probes for determinative microscopy of methanogenic Archaea. A. Methano. Laboratory Man., pp. 111–121. Search in Google Scholar

Stewart W.M., Vaidya B.N., Mahapatra A.K., Terrill T.H., Joshee N. (2018). Potential use of multipurpose Paulownia elongata tree as an animal feed resource. American J. Plant Sci., 9: 1212. Search in Google Scholar

Torres R., Ghedini C., Paschoaloto J., da Silva D., Coelho L., Junior G.A., Ezequiel J., Neto O.M., Almeida M. (2022). Effects of tannins supplementation to sheep diets on their performance, carcass parameters and meat fatty acid profile: a meta-analysis study. S. Rumin. Res., 206: 106585. Search in Google Scholar

Ungerfeld E.M. (2020). Metabolic hydrogen flows in rumen fermentation: principles and possibilities of interventions. Front. Microbiol., 11: 589. Search in Google Scholar

Urrutia O., Mendizabal J.A., Alfonso L., Soret B., Insausti K., Arana A. (2020). Adipose tissue modification through feeding strategies and their implication on adipogenesis and adipose tissue metabolism in ruminants. Int. J. Mol. Sci., 21: 3183. Search in Google Scholar

Van Soest P.V., Robertson J.B., Lewis B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583–3597. Search in Google Scholar

Vasta V., Yáñez-Ruiz D.R., Mele M., Serra A., Luciano G., Lanza M., Biondi L., Priolo A. (2010). Bacterial and protozoal communities and fatty acid profile in the rumen of sheep fed a diet containing added tannins. App. Environ. Microbiol., 76: 2549–2555. Search in Google Scholar

Vasta V., Daghio M., Cappucci A., Buccioni A., Serra A., Viti C., Mele M. (2019). Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci., 102: 3781–3804. Search in Google Scholar

Vera N., Suescun-Ospina S.T., Allende R., Gutiérrez-Gómez C., Junod T., Williams P., Fuentealba C., Ávila-Stagno J. (2023). A short-term supplementation with a polyphenol-rich extract from radiata pine bark improves fatty acid profiles in finishing lambs. Animal, 13: 188. Search in Google Scholar

Waghorn G. (2008). Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production – Progress and challenges. Anim. Feed Sci. Tech., 147: 116–139. Search in Google Scholar

Articoli consigliati da Trend MD