INFORMAZIONI SU QUESTO ARTICOLO

Cita

Abbas R.Z., Zaman M.A., Sindhu D., Sharif M., Rafique A., Saeed Z., Rehman T., Siddique F., Zaheer T., Khan M.K., Akram M.S., Chattha A.J., Fatima U., Munir T., Ahmad M. (2020). Anthelmintic effects and toxicity analysis of herbal dewormer against the infection of Haemonchus contortus and Fasciola hepatica in goat. Pak. Vet. J., 40. Search in Google Scholar

Ageitos J.M., Sánchez-Pérez A., Calo-Mata P., Villa T.G. (2017). Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem. Pharmacol., 133: 117–138. Search in Google Scholar

Agier J., Efenberger M., Brzezińska-Błaszczyk E. (2015). Cathelicidin impact on inflammatory cells. Cent. Eur. J. Immun., 40: 225–235. Search in Google Scholar

Ahmad S., Rasheed U., Naz I., Ali S., Ali N., Aziz A. (2022). Antimicrobial resistant pattern of isolates from intensive care unit of tertiary care hospital. Advance. Life Sci., 9: 32–35. Search in Google Scholar

Ahmed A., Siman-Tov G., Hall G., Bhalla N., Narayanan A. (2019). Human antimicrobial peptides as therapeutics for viral infections. Viruses, 11: 704. Search in Google Scholar

Akrami M., Balalaie S., Hosseinkhani S., Alipour M., Salehi F., Bahador A., Haririan I. (2016). Tuning the anticancer activity of a novel pro-apoptotic peptide using gold nanoparticle platforms. Sci. Rep., 6: 1–12. Search in Google Scholar

Amerikova M., Pencheva El-Tibi I., Maslarska V., Bozhanov S., Tachkov K. (2019). Antimicrobial activity, mechanism of action, and methods for stabilisation of defensins as new therapeutic agents. Biotech. Biotechnol. Equipment, 33: 671–682. Search in Google Scholar

Amira M., Rateb A.A., Hammad R.A.E., Faisal N.E.D., Salama D.M., Khalda S.M. (2021). Human b-2 defensin in tinea versicolor and tinea circinata. Med. J. Cairo Univ., 89: 1141–1145. Search in Google Scholar

Bagheri M. (2015). Cationic antimicrobial peptides (AMPs): thermodynamic characterization of peptide–lipid interactions and biological efficacy of surface-tethered peptides. Chem. Open, 4: 389–393. Search in Google Scholar

Bahar A.A., Ren D. (2013). Antimicrobial peptides. Pharmaceuticals, 6: 1543–1575. Search in Google Scholar

Becker D.E. (2013). Antimicrobial drugs. Anesthesia Progr., 60: 111–123. Search in Google Scholar

Bogdanova L.R., Valiullina Y.A., Faizullin D.A., Kurbanov R.K., Ermakova E.A. (2020). Spectroscopic, zeta potential and molecular dynamics studies of the interaction of antimicrobial peptides with model bacterial membrane. Spectrochim. Acta A Mol. Biomol. Spectros., 242: 118785. Search in Google Scholar

Brady D., Grapputo A., Romoli O., Sandrelli F. (2019). Insect cecropins, antimicrobial peptides with potential therapeutic applications. Int. J. Mol. Sci., 20: 5862. Search in Google Scholar

Cao X., Wang Y., Wu C., Li X., Fu, Z., Yang M., Yang X. (2018). Cathelicidin-OA1, a novel antioxidant peptide identified from an amphibian, accelerates skin wound healing. Sci. Rep., 8: 1–15. Search in Google Scholar

Cardoso M.H., Meneguetti B.T., Costa B.O., Buccini D.F., Oshiro K.G., Preza S.L., Franco O.L. (2019). Non-lytic antibacterial peptides that translocate through bacterial membranes to act on intracellular targets. Inter. J. Mol. Sci., 20: 4877. Search in Google Scholar

Casciaro B., Moros M., Rivera-Fernández S. (2017). Gold-nanoparticles coated with the antimicrobial peptide esculentin-1a (1–21) NH2 as a reliable strategy for antipseudomonal drugs. Acta Biomat., 47: 170–181. Search in Google Scholar

Casciaro B., Dutta D., Loffredo M.R., Marcheggiani S., McDermott A.M., Willcox M.D., Mangoni M.L. (2018). Esculentin-1a derived peptides kill Pseudomonas aeruginosa biofilm on soft contact lenses and retain antibacterial activity upon immobilization to the lens surface. Peptide Sci., 110: e23074. Search in Google Scholar

Chaly Y.V., Paleolog E.M., Kolesnikova T.S., Tikhonov I.I., Petratchenko E.V., Voitenok N.N. (2000). Neutrophil alpha-defensin human neutrophil peptide modulates cytoline production in human monocytes and adhesion molecule expression in endothelial cells. Eur. Cyto. Net., 11: 257–266. Search in Google Scholar

Chaudhari A.A., Kate K., Dennis V., Singh S.R., Owen D.R., Palazzo C., Arnold R.D., Miller M.E., Pillai S.R. (2016). A novel covalent approach to bio-conjugate silver coated single walled carbon nanotubes with antimicrobial peptide. J. Nanobiotechnol., 14: 1–15. Search in Google Scholar

Chen W.Y., Chang H.Y., Lu J.K., Huang Y.C., Harroun S.G., Tseng Y.T., Li Y.J., Huang C.C., Chang H.T. (2015). Self-assembly of antimicrobial peptides on gold nanodots: against multidrug-resistant bacteria and wound-healing application. Adv. Funct. Mater., 25: 7189–7199. Search in Google Scholar

Cheng J.T., Hale J.D., Elliot M., Hancock R.E., Straus S.K. (2009). Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Biophys. J., 96: 552–565. Search in Google Scholar

Chih Y.H., Wang S.Y., Yip B.S., Cheng K.T., Hsu S.Y., Wu C.L., Yu H.Y., Cheng J.W. (2019). Dependence on size and shape of nonnature amino acids in the enhancement of lipopolysaccharide (LPS) neutralizing activities of antimicrobial peptides. J. Colloid Interface Sci., 533: 492–502. Search in Google Scholar

Chlebicz A., Śliżewska K. (2018). Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as zoonotic foodborne diseases. Int. J. Environ. Res. Public Health, 15: 863. Search in Google Scholar

Cid-Uribe J.I., Veytia-Bucheli J.I., Romero-Gutierrez T., Ortiz E., Possani L.D. (2020). Scorpion venomics: a 2019 overview. Expert Rev. Proteom., 17: 67–83. Search in Google Scholar

Cui Y., Zhao Y., Tian Y., Zhang W., Lü X., Jiang X. (2012). The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials, 33: 2327–2333. Search in Google Scholar

Das S., Pradhan C., Pillai D. (2022). β-Defensin: an adroit saviour in teleosts. Fish Shellfish Immunol., 123: 417–430. Search in Google Scholar

De Breij A., Riool M., Kwakman P.H.S., De Boer L., Cordfunke R.A., Drijfhout J.W., Moriarty T.F. (2016). Prevention of Staphylococcus aureus biomaterial-associated infections using a polymer-lipid coating containing the antimicrobial peptide OP-145. J. Control. Release, 222: 1–8. Search in Google Scholar

Dhople V., Krukemeyer A., Ramamoorthy A. (2006). The human beta-defensin-3, an antibacterial peptide with multiple biological functions. Biochim. Biophys. Acta Biomembranes, 1758: 1499–1512. Search in Google Scholar

Diehnelt C.W. (2013). Peptide array based discovery of synthetic antimicrobial peptides Front. Microbiol., 4: 402. Search in Google Scholar

Dosler S., Mataraci E. (2013). In vitro pharmacokinetics of antimicrobial cationic peptides alone and in combination with antibiot ics against methicillin resistant Staphylococcus aureus biofilms. Peptides, 49: 53–58. Search in Google Scholar

Drexler M. (2010). How infection works. In: What you need to know about infectious disease. National Academies Press (US). Search in Google Scholar

Du Y., Yang Y., Zhang W., Yang C., Xu P. (2023). Human β-defensin-3 and nuclear factor-kappa B p65 synergistically promote the cell proliferation and invasion of oral squamous cell carcinoma. Transl. Oncol., 27: 101582. Search in Google Scholar

Durán N., Durán M., De Jesus M.B., Seabra A.B., Fávaro W.J., Nakazato G. (2016). Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine: Nanotechnol. Biol. Med., 12: 789–799. Search in Google Scholar

Fayaz A.M., Girilal M., Mahdy S.A., Somsundar S.S., Venkatesan R., Kalaichelvan P.T. (2011). Vancomycin bound biogenic gold nanoparticles: a different perspective for development of anti VRSA agents. Process Biochem., 46: 636–641. Search in Google Scholar

Felício M.R., Silva O.N., Gonçalves S., Santos N.C., Franco O.L. (2017). Peptides with dual antimicrobial and anticancer activities. Front. Chem., 5: 5. Search in Google Scholar

Ferrando R.M., Lay L., Polito L. (2020). Gold nanoparticle-based platforms for vaccine development. Drug Discov. Today Technol., 38: 57–67. Search in Google Scholar

Fjell C.D., Hiss J.A., Hancock R.E., Schneider G. (2012). Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov., 11: 37–51. Search in Google Scholar

Ganz T. (2005). Defensins and other antimicrobial peptides: a historical perspective and an update. Comb. Chem. High Throughput Screen, 8: 209–217. Search in Google Scholar

Gao X., Ding J., Liao C., Xu J., Liu X., Lu W. (2021). Defensins: The natural peptide antibiotic. Advanced Drug Deliv. Rev., 179: 114008. Search in Google Scholar

Gaspar D., Castanho M.A. (2016). Anticancer peptides: prospective innovation in cancer therapy. Host defense peptides and their potential as therapeutic agents. Springer, Cham., pp. 95–109. Search in Google Scholar

Geilich B.M., van de Ven A.L., Singleton G.L., Sepúlveda L.J., Sridhar S., Webster T.J. (2015). Silver nanoparticle-embedded polymersome nanocarriers for the treatment of antibiotic-resistant infections. Nanoscale, 7: 3511–3519. Search in Google Scholar

Gera S., Kankuri E., Kogermann K. (2021). Antimicrobial peptides – unleashing their therapeutic potential using nanotechnology. Pharmacol. Therapeut., 232: 107990. Search in Google Scholar

Ghosh S.K., McCormick T.S., Weinberg A. (2019). Human beta defensins and cancer: contradictions and common ground. Front. Oncol., 9: 341. Search in Google Scholar

Gu H., Ho P.L., Tong E., Wang L., Xu B. (2003). Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett., 3: 1261–1263. Search in Google Scholar

Guo Y., Xun M., Han J. (2018). A bovine myeloid antimicrobial peptide (BMAP-28) and its analogs kill pan-drug-resistant Acinetobacter baumannii by interacting with outer membrane protein A (OmpA). Medicine (Baltimore), 97: 12832. Search in Google Scholar

Harmouche N., Aisenbrey C., Porcelli F., Xia Y., Nelson S.E., Chen X., Raya J., Vermeer L., Aparicio C., Veglia G., Gorr S.U. (2017). Solution and solid-state nuclear magnetic resonance structural investigations of the antimicrobial designer peptide GL13K in membranes. Biochemistry, 56: 4269–4278. Search in Google Scholar

Harris S.J., Cormican M., Cummins E. (2012). Antimicrobial residues and antimicrobial-resistant bacteria: impact on the microbial environment and risk to human health – a review. Human Ecol. Risk Asses.: Interna. J., 18: 767–809. Search in Google Scholar

Hartmann R., Meisel H. (2007). Food-derived peptides with biological activity: from research to food applications. Curr. Opin. Biotech., 18: 163–169. Search in Google Scholar

Hassan M., Ali A., Ahmad A., Saleemi M.K., Wajid M., Sarwar Y., Iqbal M. (2021). Purification and antigenic detection of Lipopolysaccharides of Salmonella enterica serovar Typhimurium isolate from Faisalabad, Pakistan. Pakis. Vet. J., 41: 1. Search in Google Scholar

Heath G.R., Harrison P.L., Strong P.N., Evans S.D., Miller K. (2018). Visualization of diffusion limited antimicrobial peptide attack on supported lipid membranes. Soft Matter, 14: 6146–6154. Search in Google Scholar

Hilchie A.L., Hoskin D.W., Power Coombs M.R. (2019). Anticancer activities of natural and synthetic peptides. Adv. Exp. Med. Biol., 1117: 131–147. Search in Google Scholar

Hu X., Zhang Y., Ding T., Liu J., Zhao H. (2020). Multifunctional gold nanoparticles: a novel nanomaterial for various medical applications and biological activities. Front. Bioeng. Biotech., 8: 990. Search in Google Scholar

Hultmark D., Steiner H., Rasmuson T., Boman H.G. (1980). Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur. J. Biochem., 106: 7–16. Search in Google Scholar

Humphreys G., Fleck F. (2016). United Nations meeting on antimicrobial resistance. WHO. Bulletin of the World Health Organization, 94: 638. Search in Google Scholar

Hunt J.M. (2010). Shiga toxin-producing Escherichia coli (STEC). Clin. Lab. Med., 30: 21–45. Search in Google Scholar

Jamil T., Kalim F., Aleem M. T., Mohsin M., Hadi F., Ali K., Hussain J. (2022). Rodents as reservoirs and carriers of different zoonotic diseases. Cont. Vet. J., 2: 1–14. Search in Google Scholar

Jelliffe R.W., Neely M. (2016). Editors. Individualized drug therapy for patients: basic foundations, relevant software and clinical applications. Academic Press, pp. 157–179. Search in Google Scholar

Kaakoush N.O., Castaño-Rodríguez N., Mitchell H.M., Man S.M. (2015). Global epidemiology of Campylobacter infection. Clin. Microbiol. Rev., 28: 687–720. Search in Google Scholar

Kang X., Dong F., Shi C., Liu S., Sun J., Chen J., Li H., Xu H., Lao X., Zheng H. (2019). DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci. Data, 6: 1–10. Search in Google Scholar

Kościuczuk E.M., Lisowski P., Jarczak J., Strzałkowska N., Jóźwik A., Horbańczuk J., Krzyżewski J., Zwierzchowski L., Bagnicka E. (2012). Cathelicidins: family of antimicrobial peptides. A review. Mol. Biol. Rep., 39: 10957–10970. Search in Google Scholar

Lee S.J., Schlesinger P.H., Wickline S.A., Lanza G.M., Baker N.A. (2011). Interaction of melittin peptides with perfluorocarbon nanoemulsion particles. J. Phys. Chem. B., 115: 15271–15279. Search in Google Scholar

Lee T.H., Hall N., Aguilar M.I. (2016). Antimicrobial peptide structure and mechanism of action: a focus on the role of membrane structure. Curr. Topics Med. Chem., 16: 25–39. Search in Google Scholar

Legrand D. (2011). Lactoferrin, a key molecule in immune and inflammatory processes. Biochem. Cell. Biol., 90: 252–268. Search in Google Scholar

Lei J., Sun L., Huang S., Zhu C., Li P., He J., Mackey V., Coy D.H., He Q. (2019). The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res., 11: 3919–3931. Search in Google Scholar

Li T., Wang N., Chen,S., Lu R., Li H., Zhang Z. (2017). Antibacterial activity and cytocompatibility of an implant coating consisting of TiO2 nanotubes combined with a GL13K antimicrobial peptide. Int. J. Nanomed., 12: 2995. Search in Google Scholar

Liang X., Zhang X., Lian K., Tian X., Zhang M., Wang S., Chen C., Nie C., Pan Y., Han F., Wei Z. (2020). Antiviral effects of bovine antimicrobial peptide against TGEV in vivo and in vitro. J. Vet. Sci., 21. Search in Google Scholar

Lino M., Kus J.V., Tran S.L., Naqvi Z., Binnington B., Goodman S.D., Segall A.M., Foster D.B. (2011). A novel antimicrobial peptide significantly enhances acid-induced killing of Shiga toxin-producing Escherichia coli O157 and Non-O157 serotypes. Microbiology, 157: 1768–1775. Search in Google Scholar

Liu L., Yang J., Xie J., Luo Z., Jiang J., Yang Y.Y., Liu S. (2013). The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for Grampositive bacteria over erythrocytes. Nanoscale, 5: 3834–3840. Search in Google Scholar

Magana M., Pushpanathan M., Santos A.L., Leanse L., Fernandez M., Ioannidis A., Giulianotti M.A., Apidianakis Y., Bradfute S., Ferguson A.L., Cherkasov A. (2020). The value of antimicrobial peptides in the age of resistance. Lancet Infect. Dis., 20: e216–e230. Search in Google Scholar

Mahlapuu M., Håkansson J., Ringstad L., Björn C. (2016). Antimicrobial peptides: an emerging category of therapeutic agents. Front. Cell Infect. Microbiol., 6: 194. Search in Google Scholar

Maniam R., Salleh A., Mohd Z.S., Firdaus Abdullah J. F., Zunita Z. (2019). A study of aetiology and risk factors of bacterial septicaemia of cats. Pak. Vet. J., 39. Search in Google Scholar

Mbindyo S.N., Kitaa J., Abuom T.O., Aboge G.O., Muasya D.W., Muchira B.W., Mulei C.M. (2023). Prevalence and risk factors of Campylobacter species infection of puppies in the Nairobi Metropolitan Region, Kenya. Int. J. Vet. Sci., 12: 389–394. Search in Google Scholar

Mehmood K., Bilal R.M., Zhang H. (2020). Study on the genotypic and phenotypic resistance of tetracycline antibiotic in Escherichia coli strains isolated from free ranging chickens of Anhui Province. China. Agrobiol. Rec., 2: 63–68. Search in Google Scholar

Mei L., Lu Z., Zhang W., Wu Z., Zhang X., Wang Y., Luo Y., Li C., Jia Y. (2013). Bioconjugated nanoparticles for attachment and penetration into pathogenic bacteria. Biomaterials, 34: 10328–10337. Search in Google Scholar

Meng S., Xu H., Wang F. (2010). Research advances of antimicrobial peptides and applications in food industry and agriculture. Curr. Prot. Pept. Sci., 11: 264–273. Search in Google Scholar

Menz J., Olsson O., Kümmerer K. (2019). Antibiotic residues in livestock manure: Does the EU risk assessment sufficiently protect against microbial toxicity and selection of resistant bacteria in the environment? J. Hazar. Mater., 379: 120807. Search in Google Scholar

Mirski T., Niemcewicz M., Bartoszcze M., Gryko R., Michalski A. (2017). Utilisation of peptides against microbial infections – a review. Ann. Agric. Environ. Med., 25: 205–210. Search in Google Scholar

Mishra B., Wang G. (2017). Titanium surfaces immobilized with the major antimicrobial fragment FK-16 of human cathelicidin LL-37 are potent against multiple antibiotic-resistant bacteria. Biofouling, 33: 544–555. Search in Google Scholar

Mohamed M.F., Abdelkhalek A., Seleem M.N. (2016). Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus. Sci. Rep., 6: 29707. Search in Google Scholar

Mohamed M.M., Fouad S.A., Elshoky H.A., Mohammed G.M., Salaheldin T.A. (2017). Antibacterial effect of gold nanoparticles against Corynebacterium pseudotuberculosis. Int. J. Vet. Sci. Med., 5: 23–29. Search in Google Scholar

Mojsoska B., Jenssen H. (2015). Peptides and peptidomimetics for antimicrobial drug design. Pharmaceuticals, 8: 366–415. Search in Google Scholar

Mookherjee N., Anderson M.A., Haagsman H.P., Davidson D.J. (2020). Antimicrobial host defence peptides: functions and clinical potential. Nature Rev. Drug Disc., 19: 311–332. Search in Google Scholar

Morales-Avila E., Ferro-Flores G., Ocampo-García B.E., López-Téllez G., López-Ortega J., Rogel-Ayala D.G., Sánchez-Padilla D. (2017). Antibacterial efficacy of gold and silver nanoparticles functionalized with the ubiquicidin antimicrobial peptide. J. Nanomat., 5831959: 29–41. Search in Google Scholar

Moravej H., Moravej Z., Yazdanparast M., Heiat M., Mirhosseini A., Moosazadeh Moghaddam M., Mirnejad R. (2018). Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria. Microb. Drug Resist., 24: 747–767. Search in Google Scholar

Mwafy A., Youssef D.Y., Mohamed M.M. (2023). Antibacterial activity of zinc oxide nanoparticles against some multidrug resistant strains of Escherichia coli and Staphylococcus aureus. Int. J. Vet. Sci., 12: 284–289. Search in Google Scholar

Narayana J.L., Chen J.Y. (2015). Antimicrobial peptides: possible antiinfective agents. Peptides, 72: 88–94. Search in Google Scholar

Nasr N.Y., El-Dawy K., Ahmed A.I., Alattar R.H. (2021). Ingestive peptides – an emerging tool for diagnostics and therapeutics: a review. Int. J. Vet. Sci., 10: 267–279. Search in Google Scholar

Nguyen L.T., Haney E.F., Vogel H.J. (2011). The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotech., 29: 464–472. Search in Google Scholar

Niyonsaba F., Nagaoka I., Ogawa H. (2006). Human defensins and cathelicidins in the skin: beyond direct antimicrobial properties. Crit. Rev. Immunol., 26: 545–576. Search in Google Scholar

Nupur M.N., Afroz F., Hossain M.K., Harun-ur-Rashid S.M., Rahman M.G., Kamruzzaman M., Haque M.A. (2023). Prevalence of potential zoonotic bacterial pathogens isolated from household pet birds and their antimicrobial profile in northern Bangladesh. Agrobiol. Rec., 11: 28–38. Search in Google Scholar

Ogunbayo A.E., Mogotsi M.T., Sondlane H., Nkwadipo K. R., Sabiu S., Nyaga M.M. (2022). Pathogen profile of children hospitalized with severe acute respiratory infections during COVID-19 pandemic in the Free State Province, South Africa. Int. J. Envir. Res. Public Health, 19: 10418. Search in Google Scholar

Pal I., Bhattacharyya D., Kar R.K., Zarena D., Bhunia A., Atreya H.S. (2019). A peptide-nanoparticle system with improved efficacy against multidrug resistant bacteria. Sci. Rep., 9: 1–11. Search in Google Scholar

Palmieri G., Tatè R., Gogliettino M., Balestrieri M., Rea I., Terracciano M., Proroga Y.T., Capuano F., Anastasio A., De Stefano L. (2018). Small synthetic peptides bioconjugated to hybrid gold nanoparticles destroy potentially deadly bacteria at submicromolar concentrations. Bioconjug. Chem., 29: 3877–3885. Search in Google Scholar

Panteleev P.V., Tsarev A.V., Bolosov I.A., Paramonov A.S., Marggraf M.B., Sychev S.V., Shenkarev Z.O., Ovchinnikova T.V. (2018). Novel antimicrobial peptides from the arctic polychaeta Nicomache minor provide new molecular insight into biological role of the BRICHOS domain. Marine Drugs, 16: 401. Search in Google Scholar

Park J., Oh J.H., Kang H.K., Choi M.C., Seo C.H., Park Y. (2020). Scorpion-venom-derived antimicrobial peptide Css54 exerts potent antimicrobial activity by disrupting bacterial membrane of zoonotic bacteria. Antibiotics, 9: 831. Search in Google Scholar

Park Y., Hahm K.S. (2005). Antimicrobial peptides (AMPs): peptide structure and mode of action. J. Biochem. Mol. Biol., 38: 507–516. Search in Google Scholar

Pazos E., Sleep E., Rubert Pérez C.M., Lee S.S., Tantakitti F., Stupp S.I. (2016). Nucleation and growth of ordered arrays of silver nanoparticles on peptide nanofibers: hybrid nanostructures with antimicrobial properties. J. Am. Chem. Soc., 138: 5507–5510. Search in Google Scholar

Peng L.H., Huang Y.F., Zhang C.Z., Niu J., Chen Y., Chu Y., Jiang Z.H., Gao J.Q., Mao Z.W. (2016). Integration of antimicrobial peptides with gold nanoparticles as unique non-viral vectors for gene delivery to mesenchymal stem cells with antibacterial activity. Biomaterials, 103: 137–149. Search in Google Scholar

Rai A., Pinto S., Velho T.R., Ferreira A.F., Moita C., Trivedi U., Evangelista M., Comune M., Rumbaugh K.P., Simões P.N., Moita L. (2016). One-step synthesis of high-density peptide-conjugated gold nanoparticles with antimicrobial efficacy in a systemic infection model. Biomaterials, 85: 99–110. Search in Google Scholar

Rathinakumar R., Wimley W.C. (2008). Biomolecular engineering by combinatorial design and high-throughput screening: small, soluble peptides that permeabilize membranes. J. Am. Chem. Soc., 130: 9849–9858. Search in Google Scholar

Reddy K., Yedery R., Aranha C. (2004). Antimicrobial peptides: Premises and promises. Int. J. Antimicrob. Agents, 24: 536–547. Search in Google Scholar

Riedl S., Zweytick D., Lohner K. (2011). Membrane-active host defense peptides-challenges and perspectives for the development of novel anticancer drugs. Chem. Phys. Lipids, 164: 766–781. Search in Google Scholar

Roudi R., Syn N.L., Roudbary M. (2017). Antimicrobial peptides as biologic and immunotherapeutic agents against cancer: a comprehensive overview. Front. Immunol., 8: 1320. Search in Google Scholar

Rozek A., Friedrich C.L., Hancock R.E. (2000). Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry, 39: 15765–15774. Search in Google Scholar

Ruden S., Hilpert K., Berditsch M., Wadhwani P., Ulrich A.S. (2009). Synergistic interaction between silver nanoparticles and membrane-permeabilizing antimicrobial peptides. Antimicrob. Agents Chemother., 53: 3538–3540. Search in Google Scholar

Salama A. (2022). The development of a novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial effect. Pharmacia, 69: 255–260. Search in Google Scholar

Salouti M., Mirzaei F., Shapouri R., Ahangari A. (2016). Synergistic antibacterial activity of plant peptide MBP-1 and silver nanoparticles combination on healing of infected wound due to Staphylococcus aureus. Jundishapur J. Microbiol., 9: 5. Search in Google Scholar

Sharif M., Tunio S.A., Bano S. (2021). Synergistic effects of zinc oxide nanoparticles and conventional antibiotics against methicillin resistant Staphylococcus aureus. Advanc. Life Sci., 8: 167–171. Search in Google Scholar

Sharma R., Raghav R., Priyanka K., Rishi P., Sharma S., Srivastava S., Verma I. (2019). Exploiting chitosan and gold nanoparticles for antimycobacterial activity of in silico identified antimicrobial motif of human neutrophil peptide-1. Sci. Rep., 9: 1–14. Search in Google Scholar

Sijbrandij T., Ligtenberg A.J., Nazmi K., Veerman E.C.I., Bolscher J.G.M., Bikker F.J. (2017). Effects of lactoferrin derived peptides on simulants of biological warfare agents. World J. Microbiol. Biotechnol., 33: 3. Search in Google Scholar

Solanki S.S., Singh P., Kashyap P., Sansi M.S., Ali S.A. (2021). Promising role of defensins peptides as therapeutics to combat against viral infection. Microbial Pathogen., 155: 104930. Search in Google Scholar

Som A., Vemparala S., Ivanov I., Tew G.N. (2008). Synthetic mimics of antimicrobial peptides. Peptide Sci., 90: 83–93. Search in Google Scholar

Su J., Wang Y., Si Y., Gao J., Song C., Cui L., Zhou Y. (2018). Galectin-13, a different prototype galectin, does not bind β-galactosides and forms dimers via intermolecular disulfide bridges between Cys-136 and Cys-138. Sci. Rep., 8: 980. Search in Google Scholar

Sun L., Zheng C., Webster T.J. (2017). Self-assembled peptide nanomaterials for biomedical applications: promises and pitfalls. Int. J. Nanomed., 12: 73–86. Search in Google Scholar

Talukdar P.K., Turner K.L., Crockett T.M., Lu X., Morris C.F., Konkel M.E. (2021). Inhibitory effect of puroindoline peptides on Campylobacter jejuni growth and biofilm formation, Front. Microbiol., 12702762. Search in Google Scholar

Tan P., Fu H., Ma X. (2021). Design, optimization, and nanotechnology of antimicrobial peptides: From exploration to applications. Nano Today, 39: 101229. Search in Google Scholar

Tang Q., Yang C., Li W., Zhang Y., Wang X., Wang W., Ma Z., Zhang D., Jin Y., Lin D. (2021). Evaluation of short-chain antimicrobial peptides with combined antimicrobial and anti-inflammatory bioactivities for the treatment of zoonotic skin pathogens from canines. Front. Microbiol., 12: 684650. Search in Google Scholar

Tanhaeian A., Mirzaii M., Pirkhezranian Z., Sekhavati M.H. (2020). Generation of an engineered food-grade Lactococcus lactis strain for production of an antimicrobial peptide: in vitro and in silico evaluation. BMC Biotechnol., 20: 1–13. Search in Google Scholar

Tapia D., Sanchez-Villamil J.I., Torres A.G. (2020). Multicomponent gold nano-glycoconjugate as a highly immunogenic and protective platform against Burkholderia mallei. NPJ Vaccines, 5: 1–11. Search in Google Scholar

Thakur A., Sharma A., Alajangi H.K., Jaiswal P.K., Lim Y.B., Singh G., Barnwal R.P. (2022). In pursuit of next-generation therapeutics: Antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications. Int. J. Biol. Macromol., 218: 135–156. Search in Google Scholar

Thomas S., Karnik S., Barai R.S., Jayaraman V.K., Idicula-Thomas S. (2010). CAMP: a useful resource for research on antimicrobial peptides. Nucleic Acids Res. 38(suppl_1): D774–D780. Search in Google Scholar

Umair M., Altaf S., Muzaffar H., Iftikhar A., Ali A., Batool N., Saifur-Rehman B.S.R. (2022). Green nanotechnology mediated silver and iron oxide nanoparticles: Potential antimicrobials. Agrobiol. Records, 10: 35–41. Search in Google Scholar

Umerska A., Cassisa V., Bastiat G., Matougui N., Nehme H., Manero F., Eveillard M., Saulnier P. (2017). Synergistic interactions between antimicrobial peptides derived from plectasin and lipid nanocapsules containing monolaurin as a cosurfactant against Staphylococcus aureus. Int. J. Nanomed., 12: 5687–5699. Search in Google Scholar

Valdez-Miramontes C.E., De Haro-Acosta J., Aréchiga-Flores C.F., Verdiguel-Fernández L., Rivas-Santiago B. (2021). Antimicrobial peptides in domestic animals and their applications in veterinary medicine. Peptides, 142: 170576. Search in Google Scholar

Vignoni M., de Alwis Weerasekera H., Simpson M.J., Phopase J., Mah T.F., Griffith M., Alarcon E.I., Scaiano J.C. (2014). LL37 peptide@ silver nanoparticles: combining the best of the two worlds for skin infection control. Nanoscale, 6: 5725–5728. Search in Google Scholar

Wadhwani P., Heidenreich N., Podeyn B., Bürck J., Ulrich A.S. (2017). Antibiotic gold: tethering of antimicrobial peptides to gold nanoparticles maintains conformational flexibility of peptides and improves trypsin susceptibility. Biomater. Sci., 5: 817–827. Search in Google Scholar

Wang A.Z., Langer R., Farokhzad O.C. (2012). Nanoparticle delivery of cancer drugs. Annu. Rev. Med., 63: 185–198. Search in Google Scholar

Wang G., Manns D.C., Guron G.K., Churey J.J., Worobo R.W. (2014). Large-scale purification, characterization, and spore outgrowth inhibitory effect of thurincin H, a bacteriocin produced by Bacillus thuringiensis SF361. Probiot. Antimicrob. Prot., 6: 105–113. Search in Google Scholar

Wang L., Hu C., Shao L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed., 12: 1227–1249. Search in Google Scholar

Wang S., Yan C., Zhang X., Shi D., Chi L., Luo G., Deng J. (2018). Antimicrobial peptide modification enhances the gene delivery and bactericidal efficiency of gold nanoparticles for accelerating diabetic wound healing. Biomater. Sci., 6: 2757–2772. Search in Google Scholar

Wang X., Zhang H., Bi L., Xi H., Wang Z., Ji Y., Zhu W. (2021). Isolation, characterization and genome analysis of a novel virulent Escherichia coli bacteriophage vb_ecom_011d4. Agrobiol. Records, 6: 27–35. Search in Google Scholar

Wimley W.C. (2010). Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem. Biol., 5: 905–917. Search in Google Scholar

Xu D., Lu W. (2020). Defensins: a double-edged sword in host immunity. Front. Immunol., 11: 764. Search in Google Scholar

Yang B., Good D., Mosaiab T., Liu W., Ni G., Kaur J., Wei M.Q. (2020). Significance of LL-37 on immunomodulation and disease outcome. BioMed Rese. Int., 2020: 8349712. Search in Google Scholar

Yeom J.H., Lee B., Kim D., Lee J.K., Kim S., Bae J., Park Y., Lee K. (2016). Gold nanoparticle-DNA aptamer conjugate-assisted delivery of antimicrobial peptide effectively eliminates intracellular Salmonella enterica serovar Typhimurium. Biomaterials, 104: 43–51. Search in Google Scholar

Yu Z., Gunn L., Wall P., Fanning S. (2017 a). Antimicrobial resistance and its association with tolerance to heavy metals in agriculture production. Food Microbiol., 64: 23–32. Search in Google Scholar

Yu K., Lo J.C., Yan M., Yang X., Brooks D.E., Hancock R.E., Kizhakkedathu J.N. (2017 b). Anti-adhesive antimicrobial peptide coating prevents catheter associated infection in a mouse urinary infection model. Biomaterials, 116: 69–81. Search in Google Scholar

Zaiou M., Gallo R.L. (2002). Cathelicidins, essential gene-encoded mammalian antibiotics. J. Mol. Med., 80: 549–561. Search in Google Scholar

Zhai Y.J., Feng Y., Ma X., Ma F. (2023). Defensins: defenders of human reproductive health. Human Reprod. Update, 29: 126–154. Search in Google Scholar

Zhang M., Wang J., Lyu Y., Fitriyanti M., Hou H., Jin Z., Zhu X., Narsimhan G. (2018). Understanding the antimicrobial activity of water soluble γ-cyclodextrin/alamethicin complex. Colloids Surfaces B: Biointerfaces, 172: 451–458. Search in Google Scholar

Zhu S., Gao B. (2013). Evolutionary origin of β-defensins. Develop. Comp. Immun., 39: 79–84. Search in Google Scholar

eISSN:
2300-8733
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine