[
Abdullah A., Nurilmala M., Jacoeb A.M., Sitaresmi K.P. (2019). Mini DNA-barcode as molecular marker for heavily processed hairtail fish products authentication. Proc: IOP Conf. Ser.: Earth Environ. Sci., 278: 012001.
]Search in Google Scholar
[
Abdullah A., Nurilmala M., Muttaqin E., Yulianto I. (2020). DNA-based analysis of shark products sold on the Indonesian market towards seafood labelling accuracy program. Biodiversitas, 21: 1385-1390.
]Search in Google Scholar
[
Adibah A.B., Syazwan S., Hanim M.H., Munir M.B., Faraha A.I., Azizah M.S. (2020). Evaluation of DNA barcoding to facilitate the authentication of processed fish products in the seafood industry. LWT, 129: 109585.
]Search in Google Scholar
[
Aglieri G., Baillie C., Mariani S., Cattano C., Calò A., Turco G., Spatafora D., Di Franco A., Di Lorenzo M., Guidetti P., Milazzo M. (2021). Environmental DNA effectively captures functional diversity of coastal fish communities. Mol. Ecol., 30: 3127-3139.
]Search in Google Scholar
[
Ahmed M.S., Chowdhury M.M.K., Nahar L. (2019). Molecular characterization of small indigenous fish species (SIS) of Bangladesh through DNA barcodes. Gene, 684: 53-57.
]Search in Google Scholar
[
Ahmed M.S., Datta S.K., Zhilik A.A. (2020). Molecular diversity of freshwater fishes of Bangladesh assessed by DNA barcoding. Bangladesh J. Zool., 48 :1-19.
]Search in Google Scholar
[
Ahmed M.S., Dina S.R., Nahar L., Islam N.N., Al Reza H. (2018). Molecular characterization of Channa species from Bangladesh based on Cytochrome c Oxidase Subunit I (COI) gene. FishTaxa, 3: 87-93.
]Search in Google Scholar
[
Ahn H., Kume M., Terashima Y., Ye F., Kameyama S., Miya M., Kasai A. (2020). Evaluation of fish biodiversity in estuaries using environmental DNA metabarcoding. PloS One, 15: e0231127.
]Search in Google Scholar
[
Alcantara S.G., Yambot A.V. (2016). DNA barcoding of commercially important grouper species (Perciformes, Serranidae) in the Philippines. Mitochondrial DNA Part A, 27: 3837-3845.
]Search in Google Scholar
[
Andruszkiewicz E.A., Starks H.A., Chavez F.P., Sassoubre L.M., Block B.A., Boehm A.B. (2017). Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLoS One, 12: e0176343.
]Search in Google Scholar
[
Ansfield M., Reaney S.D., Jackman R. (2000). Production of a Sensitive Immunoassay for Detection of Ruminant and Porcine Proteins, Heated to ≫ 130°C at 2.7 bar, in Compound Animal Feedstuffs. Food Agric. Immunol., 12: 273-284.
]Search in Google Scholar
[
Aquino L.M.G., Tango J.M., Canoy R.J.C., Fontanilla I.K.C., Basiao Z.U., Ong P.S., Quilang J.P. (2011). DNA barcoding of fishes of Laguna de Bay, Philippines. Mitochondrial DNA, 22: 143-153.
]Search in Google Scholar
[
Armani A., Tinacci L., Lorenzetti R., Benvenuti A., Susini F., Gasperetti L., Ricci E., Guarducci M., Guidi A. (2017). Is raw better? A multiple DNA barcoding approach (full and mini) based on mitochondrial and nuclear markers reveals low rates of misdescription in sushi products sold on the Italian market. Food Control, 79: 126-133.
]Search in Google Scholar
[
Asensio L. (2007) PCR-based methods for fish and fishery products authentication. Trends Food Sci. Tech.,18: 558-566.10.1016/j.tifs.2007.04.016
]Search in Google Scholar
[
Asensio L., González I., García T., Martín R. (2008). Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA). Food Control, 19: 1-8.
]Search in Google Scholar
[
Avise J.C. (2000). Phylogeography: the history and formation of species. Harvard university press.10.2307/j.ctv1nzfgj7
]Search in Google Scholar
[
Baik I., Abbott R.D., Curb, J.D., Shin C. (2010). Intake of fish and n-3 fatty acids and future risk of metabolic syndrome. J. Am. Diet. Assoc., 110: 1018-1026.
]Search in Google Scholar
[
Balami S., Sharma A., Karn R. (2019). Significance of nutritional value of fish for human health. Malays J. Halal Res., 2: 32-34.
]Search in Google Scholar
[
Balasingham K.D., Walter R.P., Mandrak N.E., Heath D.D. (2018). Environmental DNA detection of rare and invasive fish species in two Great Lakes tributaries. Mol. Eco., 27: 112-127.
]Search in Google Scholar
[
Bálint M., Nowak C., Márton O., Pauls S.U., Wittwer C., Aramayo J.L., Jansen M. (2018). Accuracy, limitations and cost efficiency of eDNA‐based community survey in tropical frogs. Mol. Ecol. Res., 18: 1415-1426.
]Search in Google Scholar
[
Ballard J.W.O., Whitlock M.C. (2004). The incomplete natural history of mitochondria. Mol. Ecol., 13: 729-744.
]Search in Google Scholar
[
Behrens-Chapuis S., Malewski T., Suchecka E., Geiger M.F., Herder F., Bogdanowicz W. (2018). Discriminating European cyprinid specimens by barcode high-resolution melting analysis (Bar-HRM)—A cost efficient and faster way for specimen assignment? Fish. Res., 204: 61-73.
]Search in Google Scholar
[
Belle C.C., Stoeckle B.C., Geist J. (2019). Taxonomic and geographical representation of freshwater environmental DNA research in aquatic conservation. Aquat. Conserv., 29: 1996-2009.
]Search in Google Scholar
[
Bellmann C., Tipping A., Sumaila U.R. (2016). Global trade in fish and fishery products: An overview. Mar. Policy, 69: 181-188.
]Search in Google Scholar
[
Berry O., Bulman C., Bunce M., Coghlan M., Murray D.C., Ward R.D. (2015). Comparison of morphological and DNA metabarcoding analyses of diets in exploited marine fishes. Mar. Ecol. Prog. Ser., 540: 167-181.
]Search in Google Scholar
[
Bineesh K.K., Gopalakrishnan A., Akhilesh K.V., Sajeela K.A., Abdussamad E.M., Pillai N.G.K., Ward R.D. (2017). DNA barcoding reveals species composition of sharks and rays in the Indian commercial fishery. Mitochondrial DNA Part A, 28: 458-472.
]Search in Google Scholar
[
Bingpeng X., Heshan L., Zhilan Z., Chunguang W., Yanguo W., Jianjun W. (2018). DNA barcoding for identification of fish species in the Taiwan Strait. PloS One, 13: e0198109.
]Search in Google Scholar
[
Blabolil P., Harper L.R., Říčanová Š. Sellers G., Di Muri C., Jůza T., Haenfling B. (2021). Environmental DNA metabarcoding uncovers environmental correlates of fish communities in spatially heterogeneous freshwater habitats. Ecol. Ind., 126: 107698.
]Search in Google Scholar
[
Boivin‐Delisle D., Laporte M., Burton F., Dion R., Normandeau E., Bernatchez L. (2021). Using environmental DNA for biomonitoring of freshwater fish communities: Comparison with established gillnet surveys in a boreal hydroelectric impoundment. Envir. DNA, 3: 105-120.
]Search in Google Scholar
[
Bokulich N.A., Subramanian S., Faith J.J., Gevers D., Gordon J.I., Knight, R., Mills D.A., Caporaso J.G. (2013). Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods, 10: 57-59.
]Search in Google Scholar
[
Bolger A.M., Lohse M., Usadel B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinfo., 30: 2114-2120.
]Search in Google Scholar
[
Bottero M.T., Dalmasso A. (2011). Animal species identification in food products: Evolution of biomolecular methods. Vet. J., 190: 34-38.
]Search in Google Scholar
[
Callejas C., Ochando M.D. (2001). Molecular identification (RAPD) of the eight species of the genus Barbus (Cyprinidae) in the Iberian Peninsula. J. Fish Biol., 59: 1589-1599.
]Search in Google Scholar
[
Čandek K., Kuntner M. (2015). DNA barcoding gap: reliable species identification over morphological and geographical scales. Mol. Ecol. Res., 15: 268-277.
]Search in Google Scholar
[
Cardeñosa D., Fields A., Abercrombie D., Feldheim K., Shea S.K., Chapman D.D. (2017). A multiplex PCR mini-barcode assay to identify processed shark products in the global trade. PloS One, 12: e0185368.
]Search in Google Scholar
[
Carvalho D.C., Palhares R.M., Drummond M.G., Frigo T.B. (2015). DNA Barcoding identification of commercialized seafood in South Brazil: A governmental regulatory forensic program. Food Control, 50: 784-788.
]Search in Google Scholar
[
Carvalho D.C., Palhares R.M., Drummond M.G., Frigo T.B. (2015). DNA Barcoding identification of commercialized seafood in South Brazil: A governmental regulatory forensic program. Food Control, 50: 784-788.
]Search in Google Scholar
[
Chang C.H., Lin H.Y., Ren Q., Lin Y.S., Shao K.T. (2016). DNA barcode identification of fish products in Taiwan: Government-commissioned authentication cases. Food Control, 66: 38-43.
]Search in Google Scholar
[
Changizi R., Farahmand H., Soltani M., Asareh R., Ghiasvand Z. (2013). Species identification reveals mislabeling of important fish products in Iran by DNA barcoding. Iran. J. Fish. Sci.,12: 783-791.
]Search in Google Scholar
[
Chapela M.J., Sotelo C.G., Pérez-Martín R.I., Pardo M.Á., Pérez-Villareal B., Gilardi P., Riese J. (2007). Comparison of DNA extraction methods from muscle of canned tuna for species identification. Food Control, 18: 1211-1215.
]Search in Google Scholar
[
Chen C., Ding Y., Wang Y., Jiang Q., Wang F., Lu C., Zhu C. (2021). High-resolution melting analysis of COI sequences distinguishes pufferfish species (Takifugu spp.) in China. J. Agric. Food Chem., 69: 794-804.
]Search in Google Scholar
[
Chen W., Ma X., Shen Y., Mao Y., He S. (2015). The fish diversity in the upper reaches of the Salween River, Nujiang River, revealed by DNA barcoding. Sci. Rep., 5: 1-12.
]Search in Google Scholar
[
Chen X., Cui Y., Nie L., Hu H., Xu Z., Sun W., Yao H. (2019). Identification and phylogenetic analysis of the complete chloroplast genomes of three ephedra herbs containing ephedrine. BioMed Res. Int., 2019: 5921725.
]Search in Google Scholar
[
Chin T.C., Adibah A.B., Hariz Z.D., Azizah M.S. (2016). Detection of mislabelled seafood products in Malaysia by DNA barcoding: Improving transparency in food market. Food Control, 64: 247-256.
]Search in Google Scholar
[
Chrysohoou C., Panagiotakos D.B., Pitsavos C., Skoumas J., Krinos X., Chloptsios Y., Nikolaou V., Stefanadis C. (2007). Long-term fish consumption is associated with protection against arrhythmia in healthy persons in a Mediterranean region--the ATTICA study. Am. J. Clin. Nutr., 85: 1385-1391.
]Search in Google Scholar
[
Chuang P.S., Hung T.C., Chang H.A., Huang C.K., Shiao J.C. (2016). The species and origin of shark fins in Taiwan’s fishing ports, markets, and customs detention: A DNA barcoding analysis. PloS One, 11: e0147290.
]Search in Google Scholar
[
Closek C.J., Santora J.A., Starks H.A., Schroeder I.D., Andruszkiewicz E.A., Sakuma K.M., Boehm A.B. (2019). Marine vertebrate biodiversity and distribution within the central California Current using environmental DNA (eDNA) metabarcoding and ecosystem surveys. Front. Mar. Sci., 6: 732.
]Search in Google Scholar
[
Coghlan M.L., Haile J., Houston J., Murray D.C., White N.E., Moolhuijzen P., Bunce M. (2012). Deep sequencing of plant and animal DNA contained within traditional Chinese medicines reveals legality issues and health safety concerns. PLoS Genetics, 8: e1002657.
]Search in Google Scholar
[
Collins R.A., Bakker J., Wangensteen O.S., Soto A.Z., Corrigan L., Sims D.W., Genner M.J. Mariani, S. (2019). Non‐specific amplification compromises environmental DNA metabarcoding with COI. Methods Ecol. Evol., 10: 1985-2001.
]Search in Google Scholar
[
Czeglédi I., Sály P., Specziár A., Preiszner B., Szalóky Z., Maroda Á., Pont D., Meulenbroek P., Valentini A. Erős T. (2021). Congruency between two traditional and eDNA-based sampling methods in characterising taxonomic and trait-based structure of fish communities and community-environment relationships in lentic environment. Ecol. Ind., 129: 107952.
]Search in Google Scholar
[
Dal Pont G., Duarte Ritter, C., Agostinis A.O., Stica P.V., Horodesky A., Cozer N., Balsanelli E., Netto O.S.M., Henn C., Ostrensky A. Pie M.R. (2021). Monitoring fish communities through environmental DNA metabarcoding in the fish pass system of the second largest hydropower plant in the world. Sci. Rep., 11: 1-13.
]Search in Google Scholar
[
Day K., Campbell H., Fisher A., Gibb K., Hill B., Rose A., Jarman S.N. (2019). Development and validation of an environmental DNA test for the endangered Gouldian finch. Endanger. Species Res., 40: 171-182.
]Search in Google Scholar
[
Deagle B.E., Jarman S.N., Coissac E., Pompanon F., Taberlet P. (2014). DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match. Biol. Lett., 10: 20140562.
]Search in Google Scholar
[
Dhar B., Ghosh S.K. (2017). Mini-DNA barcode in identification of the ornamental fish: A case study from Northeast India. Gene, 627: 248-254.
]Search in Google Scholar
[
Di Muri C., Lawson Handley L., Bean C.W., Li J., Peirson G., Sellers G.S., Walsh K., Watson H.V., Winfield I.J. Hänfling B. (2020). Read counts from environmental DNA (eDNA) metabarcoding reflect fish abundance and biomass in drained ponds. Metabarcoding Metagenom., 4: 97-112.
]Search in Google Scholar
[
Di Pinto A., Marchetti P., Mottola A., Bozzo G., Bonerba E., Ceci E., Tantillo G. (2015). Species identification in fish fillet products using DNA barcoding. Fish. Res., 170: 9-13.
]Search in Google Scholar
[
Díaz C., Wege F.F., Tang C.Q., Crampton-Platt A., Rüdel H., Eilebrecht E. Koschorreck J. (2020). Aquatic suspended particulate matter as source of eDNA for fish metabarcoding. Sci. Rep., 10: 1-8.
]Search in Google Scholar
[
Díaz J., Villanova G.V., Brancolini F., Del Pazo F., Posner V.M., Grimberg A., Arranz S.E. (2016). First DNA barcode reference library for the identification of South American freshwater fish from the lower Paraná river. PLoS One, 11: e0157419.
]Search in Google Scholar
[
Doble C.J., Hipperson H., Salzburger W., Horsburgh G.J., Mwita C., Murrell D.J., Day J.J. (2020). Testing the performance of environmental DNA metabarcoding for surveying highly diverse tropical fish communities: A case study from Lake Tanganyika. Environ. DNA, 2: 24-41.
]Search in Google Scholar
[
Duke E.M., Burton R.S. (2020). Efficacy of metabarcoding for identification of fish eggs evaluated with mock communities. Ecol. Evol., 10: 3463-3476.
]Search in Google Scholar
[
Duong T.Y., Tran L.V.D., Nguyen N.T.T., Jamaluddin J.A.F., Azizah M.N.S. (2020). Unravelling taxonomic ambiguity of the Mastacembelidae in the Mekong Delta (Vietnam) through DNA barcoding and morphological approaches. Trop. Zool., 33: 63-76.
]Search in Google Scholar
[
Durand J.D., Pham M.H., Tran T.T.V., Hoang D.H., Van Vo Q. (2020). Sorting the wheat from the chaff: a review of BINs associated with groupers of Vietnam and the implications for species identification from DNA barcoding. Mar. Biodivers., 50: 1-23.
]Search in Google Scholar
[
Etienne M., Jérôme M., Fleurence J., Rehbein H., Kündiger R., Mendes R., Luten J. (2000). Identification of fish species after cooking by SDS− PAGE and urea IEF: a collaborative study. J. Agric. Food Chem., 48: 2653-2658.
]Search in Google Scholar
[
Euclide P.T., Lor Y., Spear M.J., Tajjioui T., Vander Zanden J., Larson W.A. Amberg J.J. (2021). Environmental DNA metabarcoding as a tool for biodiversity assessment and monitoring: reconstructing established fish communities of North‐Temperate lakes and rivers. Divers. Distrib., 27: 1966-1980.
]Search in Google Scholar
[
Evans N.T., Olds B.P., Renshaw M.A., Turner C.R., Li Y., Jerde C.L., Lodge D.M. (2016). Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Mol. Ecol. Resour., 16: 29-41.
]Search in Google Scholar
[
Fadli N., Nor S.A.M., Othman A.S., Sofyan H., Muchlisin Z.A. (2020). DNA barcoding of commercially important reef fishes in Weh Island, Aceh, Indonesia. PeerJ, 8: e9641.
]Search in Google Scholar
[
Fatima R. (2018). CO1 gene based identification analysis of two freshwater fish and Cirrhinus mrigala Ravi, Punjab.
]Search in Google Scholar
[
Fields A.T., Abercrombie D.L., Eng R., Feldheim K., Chapman D.D. (2015). A novel mini-DNA barcoding assay to identify processed fins from internationally protected shark species. PloS One, 10: e0114844.
]Search in Google Scholar
[
Filonzi L., Vaghi M., Ardenghi A., Rontani P.M., Voccia A., Nonnis Marzano F. (2021). Efficiency of DNA mini-barcoding to assess mislabeling in commercial fish products in Italy: An overview of the last decade. Foods, 10: 1449.
]Search in Google Scholar
[
Freyhof J., Abdullah Y.S., Ararat K., Ibrahim H., Geiger M.F. (2016). Eidinemacheilus proudlovei, a new subterranean loach from Iraqi Kurdistan (Teleostei; Nemacheilidae). Zootaxa, 4173: 225-236.
]Search in Google Scholar
[
Frigerio J., Marchesi C., Magoni C., Saliu F., Ballabio D., Consonni V., Labra M. (2021). Application of DNA mini-barcoding and infrared spectroscopy for the authentication of the Italian product “Bottarga”. LWT, 139: 110603.
]Search in Google Scholar
[
Fujii K., Doi H., Matsuoka S., Nagano M., Sato H. Yamanaka H. (2019). Environmental DNA metabarcoding for fish community analysis in backwater lakes: A comparison of capture methods. PLoS One, 14: e0210357.
]Search in Google Scholar
[
Fukaya K., Oka S.I., Sato K., Kondoh M. Miya, M. (2019). Evaluation of detection probabilities at the water-filtering and initial PCR steps in environmental DNA metabarcoding using a multispecies site occupancy model. Sci. Rep., 9: 1-8.
]Search in Google Scholar
[
Galal-Khallaf A., Osman A.G., Carleos C.E., Garcia-Vazquez E., Borrell Y.J. (2016). A case study for assessing fish traceability in Egyptian aquafeed formulations using pyro sequencing and metabarcoding. Fish. Res., 174: 143-150.
]Search in Google Scholar
[
Gao T.X., Ji D.P., Xiao Y.S., Xue T.Q., Yanagimoto T., Setoguma, T. (2011). Description and DNA barcoding of a new Sillago species, Sillago sinica (Perciformes: sillaginidae), from coastal waters of China. Zool. Studies, 50: 254-263.
]Search in Google Scholar
[
Garcia-Vazquez E., Georges O., Fernandez S., Ardura A. (2021). eDNA metabarcoding of small plankton samples to detect fish larvae and their preys from Atlantic and Pacific waters. Sci. Rep., 11: 7224.
]Search in Google Scholar
[
Gaston K.J., O’Neill M.A. (2004). Automated species identification: why not? Philos. Trans. R. Soc. Lond., B, Biol. Sci., 359: 655-667.
]Search in Google Scholar
[
Ghouri M.Z., Ismail M., Javed M.A., Khan S.H., Munawar N., Umar A.B., Ahmad A. (2020). Identification of edible fish species of Pakistan through DNA barcoding. Front. Mar. Sci., 7: 554183.
]Search in Google Scholar
[
Gold Z., Sprague J., Kushner D.J., Zerecero Marin E. Barber P.H. (2021). eDNA metabarcoding as a biomonitoring tool for marine protected areas. PLoS One, 16: e0238557.
]Search in Google Scholar
[
Guimarães-Costa A.J., Machado F.S., Oliveira R.R., Silva-Costa V., Andrade M.C., Giarrizzo T., Schneider H. (2019). Fish diversity of the largest deltaic formation in the Americas-a description of the fish fauna of the Parnaíba Delta using DNA Barcoding. Sci. Rep., 9: 1-8.
]Search in Google Scholar
[
Guimarães-Costa A., Machado F.S., Reis-Filho J.A., Andrade M., Araújo R.G., Corrêa E.M.R., Giarrizzo T. (2020). DNA Barcoding for the Assessment of the Taxonomy and Conservation Status of the Fish Bycatch of the Northern Brazilian Shrimp Trawl Fishery. Front. Mar. Sci., 7: 566021.
]Search in Google Scholar
[
Ha T.T.T., Huong N.T., Hung N.P., Guiguen Y. (2018). Species identification using DNA barcoding on processed Panga catfish products in Viet Nam revealed important mislabeling. Turkish J. Fish. Aquat. Sci.,18: 457-462.
]Search in Google Scholar
[
Hajibabaei M., Smith M.A., Janzen D.H., Rodriguez J.J., Whitfield J.B., Hebert P.D. (2006). A minimalist barcode can identify a specimen whose DNA is degraded. Mol. Ecol. Notes, 6: 959-964.
]Search in Google Scholar
[
Handy S.M., Deeds J.R., Ivanova N.V., Hebert P.D., Hanner R.H., Ormos A., Yancy H.F. (2011). A single-laboratory validated method for the generation of DNA barcodes for the identification of fish for regulatory compliance. J. AOAC Int., 94: 201-210.
]Search in Google Scholar
[
Hänfling B., Lawson Handley, L., Read D.S., Hahn C., Li J., Nichols P., Winfield I.J. (2016). Environmental DNA metabarcoding of lake fish communities reflects long‐term data from established survey methods. Mol. Ecol., 25: 3101-3119.
]Search in Google Scholar
[
Hanner R., Becker S., Ivanova N.V., Steinke D. (2011). FISH-BOL and seafood identification: Geographically dispersed case studies reveal systemic market substitution across Canada. Mitochondrial DNA, 22: 106-122.
]Search in Google Scholar
[
Harper, L.R., Lawson Handley L., Hahn C., Boonham N., Rees H.C., Gough K.C., Lewis E., Adams I.P., Brotherton P., Phillips S. Hänfling B. (2018). Needle in a haystack? A comparison of eDNA metabarcoding and targeted qPCR for detection of the great crested newt (Triturus cristatus). Ecol. Evol., 8: 6330-6341.
]Search in Google Scholar
[
Hashemzadeh Segherloo I., Tabatabaei S.N., Abdolahi‐Mousavi E., Hernandez C., Normandeau E., Laporte M., Boyle B., Amiri M., GhaedRahmati N., Hallerman E. Bernatchez L. (2021). eDNA metabarcoding as a means to assess distribution of subterranean fish communities: Iranian blind cave fishes as a case study. Environ. DNA, 4: 402-416.
]Search in Google Scholar
[
Hassan M.M., Sabry A., Ismai M. (2020). Molecular Identification and Characterization of Parrotfish species from the Farasan Islands, Red Sea-Saudi Arabia. Jordan J. Biol. Sci., 13: 535 - 541.
]Search in Google Scholar
[
Hassold S., Lowry P.P., Bauert M.R., Razafintsalama A., Ramamonjisoa L., Widmer A. (2016). DNA barcoding of Malagasy rosewoods: towards a molecular identification of CITES-listed Dalbergia species. PLoS One, 11: e0157881.
]Search in Google Scholar
[
Hebert P.D., Cywinska A., Ball S.L., De Waard J.R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biol. Sci., 270: 313-321.
]Search in Google Scholar
[
Hebert P.D., Ratnasingham S., De Waard J.R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B: Biol. Sci., 270: S96-S99.
]Search in Google Scholar
[
Hellberg R.S., Isaacs R.B., Hernandez E.L. (2019). Identification of shark species in commercial products using DNA barcoding. Fish. Res., 210: 81-88.
]Search in Google Scholar
[
Hering D., Borja A., Jones J.I., Pont D., Boets P., Bouchez A., Kelly M. (2018). Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive. Water Res., 138: 192-205.
]Search in Google Scholar
[
Hogg I.D., Hebert P.D. (2004). Biological identification of springtails (Hexapoda: Collembola) from the Canadian Arctic, using mitochondrial DNA barcodes. Canadian J. Zool., 82: 749-754.
]Search in Google Scholar
[
Hollingsworth P.M. (2007). DNA barcoding: potential users. Genomics Soc. Policy, 3: 44-47.
]Search in Google Scholar
[
Hossain M.M., Uddin S.M.K., Chowdhury Z.Z., Sultana S., Johan M.R., Rohman A., Ali M.E. (2019). Universal mitochondrial 16s rRNA biomarker for mini-barcode to identify fish species in Malaysian fish products. Food Addit. Contam.: Part A, 36: 493-506.
]Search in Google Scholar
[
Hu Y., Huang S.Y., Hanner R., Levin J., Lu X. (2018). Study of fish products in Metro Vancouver using DNA barcoding methods reveals fraudulent labeling. Food Control, 94: 38-47.
]Search in Google Scholar
[
Hubalkova Z., Kralik P., Tremlova B., Rencova E. (2007). Methods of gadoid fish species identification in food and their economic impact in the Czech Republic: a review. Vet. Med., 52: 273-292.
]Search in Google Scholar
[
Hubert N., Hanner R., Holm E., Mandrak N.E., Taylor E., Burridge M., Bernatchez L. (2008). Identifying Canadian freshwater fishes through DNA barcodes. PLoS One, 3: e2490.
]Search in Google Scholar
[
Kappel K., Schröder U. (2016). Substitution of high-priced fish with low-priced species: adulteration of common sole in German restaurants. Food Control, 59: 478-486.
]Search in Google Scholar
[
Karim A., Iqbal A., Akhtar R., Rizwan M., Amar A., Qamar U., Jahan S. (2016). Barcoding of fresh water fishes from Pakistan. Mitochondrial DNA Part A, 27: 2685-2688.
]Search in Google Scholar
[
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Drummond A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28: 1647-1649.
]Search in Google Scholar
[
Keskin E. (2014). Detection of invasive freshwater fish species using environmental DNA survey. Biochem. Syst. Ecol., 56: 68-74.
]Search in Google Scholar
[
Keskin E., Atar H.H. (2013). DNA barcoding commercially important fish species of Turkey. Mol. Ecol. Resour., 13: 788-797.
]Search in Google Scholar
[
Keskin E., Ağdamar S., Tarkan A.S. (2013). DNA barcoding common non-native freshwater fish species in Turkey: Low genetic diversity but high population structuring. Mitochondrial DNA, 24: 276-287.
]Search in Google Scholar
[
Khaliq F., Shafi N., Rehman A., Janjua S. (2015). Cytochrome Oxidase Subunit 1 (COI) gene based phylogenetic analysis of Mahseer (Tor putitora) of Pakistan. J. Anim. Plant. Sci., 25: 527-531.
]Search in Google Scholar
[
Khedkar G.D., Jamdade R., Naik S., David L., Haymer D. (2014). DNA barcodes for the fishes of the Narmada, one of India’s longest rivers. PloS One, 9: e101460.
]Search in Google Scholar
[
Ko H.L., Wang Y.T., Chiu T.S., Lee M.A., Leu M.Y., Chang K.Z., Shao K.T. (2013). Evaluating the accuracy of morphological identification of larval fishes by applying DNA barcoding. PLoS One, 8: e53451.
]Search in Google Scholar
[
Kume M., Lavergne E., Ahn H., Terashima Y., Kadowaki K., Ye F., Kameyama S., Kai Y., Henmi Y., Yamashita Y., KasaiA. (2021). Factors structuring estuarine and coastal fish communities across Japan using environmental DNA metabarcoding. Ecol. Ind., 121: 107216.
]Search in Google Scholar
[
Kvasnička F. (2005). Capillary electrophoresis in food authenticity. J. Sep. Sci., 28: 813-825.
]Search in Google Scholar
[
Lakra W.S., Singh M., Goswami M., Gopalakrishnan A., Lal K.K., Mohindra V., Ayyappan S. (2016). DNA barcoding Indian freshwater fishes. Mitochondrial DNA Part A, 27: 4510-4517.
]Search in Google Scholar
[
Lara A., Ponce de León J.L., Rodriguez R., Casane D., Cote G., Bernatchez L., García‐Machado E.R.I.K. (2010). DNA barcoding of Cuban freshwater fishes: evidence for cryptic species and taxonomic conflicts. Mol. Ecol. Resour., 10: 421-430.
]Search in Google Scholar
[
Laskar B.A., Bhattacharjee M.J., Dhar B., Mahadani P., Kundu S., Ghosh S.K. (2013). The species dilemma of northeast Indian mahseer (Actinopterygii: Cyprinidae): DNA barcoding in clarifying the riddle. PloS One, 8: e53704.
]Search in Google Scholar
[
Lawson Handley L. (2015). How will the ‘Molecular revolution’contribute to biological recording?. Biol. J. Linn. Soc., 115: 750-766.
]Search in Google Scholar
[
Lecaudey L.A., Schletterer M., Kuzovlev V.V., Hahn C., Weiss S.J. (2019). Fish diversity assessment in the headwaters of the Volga River using environmental DNA metabarcoding. Aquat. Conserv.: Mar. Freshwater Ecosys., 29: 1785-1800.
]Search in Google Scholar
[
Lee H.T., Liao C.H., Hsu T.H. (2021). Environmental DNA (eDNA) Metabarcoding in the Fish Market and Nearby Seafood Restaurants in Taiwan Reveals the Underestimation of Fish Species Diversity in Seafood. Biol., 10: 1132.
]Search in Google Scholar
[
Leray M., Meyer C.P., Mills S.C. (2015). Metabarcoding dietary analysis of coral dwelling predatory fish demonstrates the minor contribution of coral mutualists to their highly partitioned, generalist diet. PeerJ, 3: e1047.
]Search in Google Scholar
[
Li J., Hatton‐Ellis T.W., Lawson Handley L.J., Kimbell H.S., Benucci M., Peirson G., Hänfling B. (2019). Ground‐truthing of a fish‐based environmental DNA metabarcoding method for assessing the quality of lakes. J. App. Ecol., 56: 1232-1244.
]Search in Google Scholar
[
Limmon G., Delrieu-Trottin E., Patikawa J., Rijoly F., Dahruddin H., Busson F., Steinke D., Hubert N. (2020). Assessing species diversity of Coral Triangle artisanal fisheries: A DNA barcode reference library for the shore fishes retailed at Ambon harbor (Indonesia). Ecol. Evo., 10: 3356-3366.
]Search in Google Scholar
[
Lipscomb D., Platnick N., Wheeler Q. (2003). The intellectual content of taxonomy: a comment on DNA taxonomy. Trends Ecol. Evol., 2: 65-66.
]Search in Google Scholar
[
Liu K., Zhao S., Yu Z., Zhou Y., Yang J., Zhao R., Yang C, Ma W, Wang X, Feng M, Tang Y, Li K, Zhou C. (2020). Application of DNA barcoding in fish identification of supermarkets in Henan province, China: More and longer COI gene sequences were obtained by designing new primers. Food Res. Int., 136: 109516.
]Search in Google Scholar
[
Liu S.Y.V., Chan C.L.C., Lin O., Hu C.S., Chen C.A. (2013). DNA barcoding of shark meats identify species composition and CITES-listed species from the markets in Taiwan. PloS One, 8: e79373.
]Search in Google Scholar
[
Ma C.Y., Ma H.Y., Ni Y., Wang W., Ma L.B. (2015). Molecular identification of the genus Thryssa based on DNA barcoding. Genet. Mol. Res., 14: 18580-18586.
]Search in Google Scholar
[
Mabragana E., Díaz de Astarloa J.M., Hanner R., Zhang J., Gonzalez Castro M. (2011). DNA barcoding identifies Argentine fishes from marine and brackish waters. PLoS One, 6: e28655.
]Search in Google Scholar
[
Macher T.H., Schütz R., Arle J., Beermann A.J., Koschorreck J. Leese F. (2021). Beyond fish eDNA metabarcoding: Field replicates disproportionately improve the detection of stream associated vertebrate species. Metabarcoding Metagenom., 5: e66557.
]Search in Google Scholar
[
Marko P.B., Lee S.C., Rice A.M., Gramling J.M., Fitzhenry T.M., McAlister J. S., Harper G.R. Moran A.L. (2004). Mislabelling of a depleted reef fish. Nature, 430: 309-310.
]Search in Google Scholar
[
Matz M.V., Nielsen R. (2005). A likelihood ratio test for species membership based on DNA sequence data. Philos. Trans. R. Soc. Lond., B, Biol. Sci., 360: 1969-1974.
]Search in Google Scholar
[
McClenaghan B., Fahner N., Cote D., Chawarski J., McCarthy A., Rajabi H., Singer G., Hajibabaei M. (2020). Harnessing the power of eDNA metabarcoding for the detection of deep-sea fishes. PloS One, 15: e0236540.
]Search in Google Scholar
[
McCusker M.R., Denti D., Van Guelpen L., Kenchington E., Bentzen P. (2013). Barcoding Atlantic Canada’s commonly encountered marine fishes. Mol. Ecol. Resour., 13: 177-188.
]Search in Google Scholar
[
Meusnier I., Singer G.A., Landry J.F., Hickey D.A., Hebert P.D., Hajibabaei M. (2008). A universal DNA mini-barcode for biodiversity analysis. BMC Genom., 9: 214.
]Search in Google Scholar
[
Milan D.T., Mendes I.S., Damasceno J.S., Teixeira D.F., Sales N.G., Carvalho, D.C. (2020). New 12S metabarcoding primers for enhanced Neotropical freshwater fish biodiversity assessment. Sci. Rep., 10: 17966.
]Search in Google Scholar
[
Mirimin L., Desmet S., Romero D.L., Fernandez S.F., Miller D.L., Mynott S., Aguzzi J. (2021). Don’t catch me if you can–Using cabled observatories as multidisciplinary platforms for marine fish community monitoring: an in situ case study combining Underwater Video and environmental DNA data. Sci. Total. Environ., 773: 145351.
]Search in Google Scholar
[
Mitchell J.K., Hellberg R.S. (2016). Use of the mitochondrial control region as a potential DNA mini-barcoding target for the identification of canned tuna species. Food Anal. Methods, 9: 2711-2720.
]Search in Google Scholar
[
Miya M., Gotoh R.O., Sado T. (2020). MiFish metabarcoding: a high-throughput approach for simultaneous detection of multiple fish species from environmental DNA and other samples. Fish Sci, 86: 939-970.
]Search in Google Scholar
[
Miya M., Sato Y., Fukunaga T., Sado T., Poulsen J.Y., Sato K., Iwasaki W. (2015). MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. Open Sci., 2: 150088..
]Search in Google Scholar
[
Morey K.C., Bartley T.J., Hanner R.H. (2020). Validating environmental DNA metabarcoding for marine fishes in diverse ecosystems using a public aquarium. Environ. DNA, 2: 330-342.
]Search in Google Scholar
[
Muchlisin Z.A., Thomy Z., Fadli N., Sarong M.A., Siti-Azizah M.N. (2013). DNA barcoding of freshwater fishes from lake Laut Tawar, Aceh Province, Indonesia. Acta Ichthyol. Piscat., 43: 21-29.
]Search in Google Scholar
[
Mueller R.L. (2006). Evolutionary rates, divergence dates, and the performance of mitochondrial genes in Bayesian phylogenetic analysis. Syst. Biol., 55: 289-300.
]Search in Google Scholar
[
Muha T.P., Rodriguez-Barreto D., O’Rorke R., Garcia de Leaniz C., Consuegra S., (2021). Using eDNA metabarcoding to monitor changes in fish community composition after barrier removal. Front. Ecol. Evol., 9: 629217.
]Search in Google Scholar
[
Muttaqin E., Abdullah A., Nurilmala M., Ichsan M., Simeone B.M., Yulianto I., Booth H. (2019). DNA-barcoding as molecular marker for seafood forensics: Species identification of locally consumed shark fish products in the world’s largest shark fishery. In IOP Conference Series: Earth Environ Sci,278(1):012049). IOP Publishing.
]Search in Google Scholar
[
Nagalakshmi K., Annam P.K., Venkateshwarlu G., Pathakota G.B., Lakra W.S. (2016). Mislabeling in Indian seafood: An investigation using DNA barcoding. Food Control, 59: 196-200.
]Search in Google Scholar
[
Nalugwa A., Jørgensen A., Nyakaana S., Kristensen T. K. (2010). Molecular phylogeny of Bulinus (Gastropoda: Planorbidae) reveals the presence of three species complexes in the Albertine Rift freshwater bodies. Int. J. Genet. Mol. Biol., 2: 130-139.
]Search in Google Scholar
[
Nicolè S., Negrisolo E., Eccher G., Mantovani R., Patarnello T., Erickson D., Barcaccia G. (2012). DNA barcoding as a reliable method for the authentication of commercial seafood products. Food Technol. Biotechnol., 50: 387-398.
]Search in Google Scholar
[
Olds B.P., Jerde C.L., Renshaw M.A., Li Y., Evans N.T., Turner C.R., Deiner K., Mahon A.R., Brueseke M.A., Shirey P.D., Pfrender M.E. (2016). Estimating species richness using environmental DNA. Ecol. Evol., 6: 4214-4226.
]Search in Google Scholar
[
Ooi Z.S., Jahari P.N.S., Sim K.S., Foo S.X., Zawai N.M., Salleh F.M. (2021). DNA barcoding of commercial fish products using dual mitochondrial markers exposes evidence for mislabelling and trade of endangered species. Proc: IOP Conf. Ser.: Earth Environ. Sci., 736: 012052.
]Search in Google Scholar
[
Pan Y., Qiu D., Chen J., Yue Q. (2020). Combining a COI Mini-Barcode with Next-Generation Sequencing for Animal Origin Ingredients Identification in Processed Meat Product. J. Food Qual., 2020: 2907670.
]Search in Google Scholar
[
Panprommin D., Panprommin N. (2017). Assessment of the DNA barcoding for identification of Trigonostigma somphongsi, a critically endangered species in Thailand. Biochem. Syst. Ecol., 70: 200-204.
]Search in Google Scholar
[
Panprommin D., Soontornprasit K., Tuncharoen S., Iamchuen N. (2020). The utility of DNA barcoding for the species identification of larval fish in the lower ing river, Thailand. Turkish J. Fish. Aquat. Sci., 20: 671-679.
]Search in Google Scholar
[
Panprommin D., Soontornprasit K., Tuncharoen S., Pithakpol S., Keereelang J. (2019). DNA barcodes for the identification of species diversity in fish from Kwan Phayao, Thailand. J. Asia-Pac. Biodivers., 12: 382-389.
]Search in Google Scholar
[
Pappalardo A.M., Ferrito V. (2015). DNA barcoding species identification unveils mislabeling of processed flatfish products in southern Italy markets. Fish. Res., 164: 153-158.
]Search in Google Scholar
[
Parson W., Pegoraro K., Niederstätter H., Föger M., Steinlechner M. (2000). Species identification by means of the cytochrome b gene. Int. J. Leg. Med., 114: 23-28.
]Search in Google Scholar
[
Patel S., Waugh J., Millar C.D., Lambert D.M. (2010). Conserved primers for DNA barcoding historical and modern samples from New Zealand and Antarctic birds. Mol. Ecol. Res., 10: 431-438.
]Search in Google Scholar
[
Pawlowski J., Esling P., Lejzerowicz F., Cedhagen T., Wilding T.A. (2014). Environmental monitoring through protist next‐generation sequencing metabarcoding: Assessing the impact of fish farming on benthic foraminifera communities. Mol. Ecol. Res., 14: 1129-1140.
]Search in Google Scholar
[
Pérez-Martin R.I., Sotelo C.G. (2003). Authenticity of species in meat and seafood products. Eduardo Cabello, Spain: Association International Congress on Authenticity of Species in Meat and Seafood Products.
]Search in Google Scholar
[
Poinar H.N., Schwarz C., Qi J., Shapiro B., MacPhee R.D., Buigues B., Schuster S.C. (2006). Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science, 311: 392-394.
]Search in Google Scholar
[
Pollack S.J., Kawalek M.D., Williams-Hill D.M., Hellberg R.S. (2018). Evaluation of DNA barcoding methodologies for the identification of fish species in cooked products. Food Control, 84: 297-304.
]Search in Google Scholar
[
Pont D., Rocle M., Valentini A., Civade R., Jean P., Maire A., Roset N., Schabuss M., Zornig H Dejean T. (2018). Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Sci. Rep., 8: 10361.
]Search in Google Scholar
[
Popa G.O., Dudu A., Bănăduc D., Curtean-Bănăduc A., Barbălată T., Burcea A., Costache M. (2017). Use of DNA barcoding in the assignment of commercially valuable fish species from Romania. Aquat. Living Resour., 30: 20.
]Search in Google Scholar
[
Port J.A., O’Donnell J.L., Romero‐Maraccini O.C., Leary P.R., Litvin S.Y., Nickols K.J., Kelly R.P. (2016). Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA. Mol. Ecol., 25: 527-541.
]Search in Google Scholar
[
Qu C., Stewart K.A., Clemente-Carvalho R., Zheng J., Wang Y., Gong C., Ma L., Zhao J., Lougheed S.C. (2020). Comparing fish prey diversity for a critically endangered aquatic mammal in a reserve and the wild using eDNA metabarcoding. Sci. Rep., 10: 16715.
]Search in Google Scholar
[
Quyen V.D.H., Phuong T.T.L., Oanh T.T., Thuoc T.L., Binh D.T. (2015). Phylogenetic Relationship of Freshwater Fish in Vietnamese Mekong. International Conference on Biological, Environment and Food Engineering (BEFE), Singapore.
]Search in Google Scholar
[
Rabaoui L., Yacoubi L., Sanna D., Casu M., Scarpa F., Lin Y.J., Qurban M.A. (2019). DNA barcoding of marine fishes from Saudi Arabian waters of the Gulf. J. Fish. Biol., 95: 1286-1297.
]Search in Google Scholar
[
Raja M., Perumal P. (2017). DNA barcoding and phylogenetic relationships of selected South Indian freshwater fishes based on mtDNA COI sequences. J. Phylogenetics Evol. Biol., 5: 1000184.
]Search in Google Scholar
[
Rasmussen Hellberg R.S., Naaum A.M., Handy S.M., Hanner R.H., Deeds J.R., Yancy H.F., Morrissey M.T. (2011). Interlaboratory evaluation of a real-time multiplex polymerase chain reaction method for identification of salmon and trout species in commercial products. J. Agric. Food Chem., 59: 876-884.
]Search in Google Scholar
[
Rasmussen R.S., Morrissey M.T., Hebert P.D. (2009). DNA barcoding of commercially important salmon and trout species (Oncorhynchus and Salmo) from North America. J. Agric. Food Chem., 57: 8379-8385.
]Search in Google Scholar
[
Ratcliffe F.C., Uren Webster T.M., Garcia de Leaniz C., Consuegra S. (2021). A drop in the ocean: Monitoring fish communities in spawning areas using environmental DNA. Environ. DNA, 3: 43-54.
]Search in Google Scholar
[
Rehbein H. (1990). Electrophoretic techniques for species identification of fishery products. Z. Lebensm. Unters. Forsch., 191: 1-10.
]Search in Google Scholar
[
Riaz T., Shehzad W., Viari A., Pompanon F., Taberlet P., Coissac E. (2011). ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res., 39: e145-e145.
]Search in Google Scholar
[
Ribeiro A.D.O., Caires R.A., Mariguela T.C., Pereira L.H.G., Hanner R., Oliveira C. (2012). DNA barcodes identify marine fishes of S ão P aulo S tate, B razil. Mol. Ecol. Resour., 12: 1012-1020.
]Search in Google Scholar
[
Rivera S.F., Rimet F., Vasselon V., Vautier M., Domaizon I., Bouchez A. (2021). Fish eDNA metabarcoding from aquatic biofilm samples: Methodological aspects. Mol. Ecol. Resou. 22, 1440-1453.10.1111/1755-0998.1356834863036
]Search in Google Scholar
[
Roungchun J.B., Tabb A.M., Hellberg R.S. (2022). Identification of tuna species in raw and processed products using DNA mini-barcoding of the mitochondrial control region. Food Control, 134: 108752.Sakai H., Iguchi K., Yamazaki Y., Sideleva V.G., Goto A. (2009). Morphological and mtDNA sequence studies on three crucian carps (Carassius: Cyprinidae) including a new stock from the Ob River system, Kazakhstan. J. Fish. Biol., 74: 1756-1773.
]Search in Google Scholar
[
Sakata M.K., Watanabe T., Maki N., Ikeda K., Kosuge T., Okada H., Minamoto T. (2021). Determining an effective sampling method for eDNA metabarcoding: a case study for fish biodiversity monitoring in a small, natural river. Limnol., 22: 221-235.
]Search in Google Scholar
[
Sato H., Sogo Y., Yamanaka H. (2017). Usefulness and limitations of sample pooling for environmental DNA metabarcoding of freshwater fish communities. Sci. Rep., 7: 14860.
]Search in Google Scholar
[
Schenekar T., Schletterer M., Lecaudey L.A., Weiss S. J. (2020). Reference databases, primer choice, and assay sensitivity for environmental metabarcoding: Lessons learnt from a re‐evaluation of an eDNA fish assessment in the Volga headwaters. River Res. App., 36: 1004-1013.
]Search in Google Scholar
[
Schindel D. E., Miller, S.E. (2005). DNA barcoding a useful tool for taxonomists. Nature, 435: 17.
]Search in Google Scholar
[
Schmieder R., Edwards R. (2011). Quality control and preprocessing of metagenomic datasets. Bioinformatics, 27(: 863-864.
]Search in Google Scholar
[
Schütz R., Tollrian R., Schweinsberg M. (2020). A novel environmental DNA detection approach for the wading birds Platalea leucorodia, Recurvirostra avosetta and Tringa totanus. Conserv. Genet. Resour., 12: 529-531.
]Search in Google Scholar
[
Sembiring A., Pertiwi N.P.D., Mahardini A., Wulandari R., Kurniasih E.M., Kuncoro A.W., Mahardika G.N. (2015). DNA barcoding reveals targeted fisheries for endangered sharks in Indonesia. Fish. Res., 164: 130-134.
]Search in Google Scholar
[
Sevilla R.G., Diez A., Norén M., Mouchel O., Jérôme M., Verrez‐Bagnis V., Van Pelt H., Favre-Krey L., Krey G., Consortium T.F., Bautista, J.M. (2007). Primers and polymerase chain reaction conditions for DNA barcoding teleost fish based on the mitochondrial cytochrome b and nuclear rhodopsin genes. Mol. Ecol. Notes, 7: 730-734.
]Search in Google Scholar
[
Shaw J.L., Clarke L.J., Wedderburn S.D., Barnes T.C., Weyrich L.S., Cooper A. (2016). Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biol. Conserv., 197: 131-138.
]Search in Google Scholar
[
Shirak A., Barkai O., Lernau O., Kahanov Y., Seroussi E., Ron M. (2013). DNA Barcoding Analysis of Fish Bones from a Shipwreck found at Dor, Israel. Isr. J. Aquac–Bamid., 65: 1-5.
]Search in Google Scholar
[
Shokralla S., Hellberg R.S., Handy S.M., King, I., Hajibabaei M. (2015). A DNA mini-barcoding system for authentication of processed fish products. Sci. Rep., 5: 15894.
]Search in Google Scholar
[
Shokralla S., Zhou X., Janzen D.H., Hallwachs W., Landry J.F., Jacobus L.M., Hajibabaei M. (2011). Pyrosequencing for mini-barcoding of fresh and old museum specimens. PLoS One, 6: e21252.
]Search in Google Scholar
[
Silva A.J., Kawalek M., Williams-Hill D.M., Hellberg R.S. (2020). PCR cloning combined with DNA barcoding enables partial identification of fish species in a mixed-species product. Front. Ecol. Evol., 8: 28.
]Search in Google Scholar
[
Srivastava R., Srivastava N. (2008). Changes in nutritive value of fish, Channa punctatus after chronic exposure to zinc. J. Environ. Biol., 29: 299-302.
]Search in Google Scholar
[
Sriwattanarothai N., Steinke D., Ruenwongsa P., Hanner R., Panijpan B. (2010). Molecular and morphological evidence supports the species status of the Mahachai fighter Betta sp. Mahachai and reveals new species of Betta from Thailand. J. Fish. Biol., 77: 414-424.
]Search in Google Scholar
[
Staats M., Arulandhu A.J., Gravendeel B., Holst-Jensen A., Scholtens I., Peelen T., Kok E. (2016). Advances in DNA metabarcoding for food and wildlife forensic species identification. Anal. Bioanal. Chem., 408: 4615-4630.
]Search in Google Scholar
[
Stat M., John J., DiBattista J.D., Newman S.J., Bunce M., Harvey E.S. (2019). Combined use of eDNA metabarcoding and video surveillance for the assessment of fish biodiversity. Conserv. Biol., 33: 196-205.
]Search in Google Scholar
[
Steinke D., Zemlak T.S., Hebert P.D. (2009). Barcoding Nemo: DNA-based identifications for the ornamental fish trade. PLoS One, 4: e6300.
]Search in Google Scholar
[
Steinke D., Zemlak T.S., Boutillier J.A., Hebert P.D. (2009). DNA barcoding of Pacific Canada’s fishes. Mar. Biol., 156: 2641-2647.
]Search in Google Scholar
[
Strauss R.E., Bond C.E. (1990). Taxonomic methods: morphology. Methods for fish biology, 109-140.
]Search in Google Scholar
[
Su M., Liu H., Liang X., Gui L., Zhang J. (2018). Dietary analysis of marine fish species: enhancing the detection of prey-specific DNA sequences via high-throughput sequencing using blocking primers. Estuaries Coasts, 41: 560-571.
]Search in Google Scholar
[
Sujatha K., Joice A.A., Kumaar P.S. (2013). Total protein and lipid content in edible tissues of fishes from Kasimodu fish landing centre, Chennai, Tamilnadu. Eur. J. Exp. Biol., 3: 252-257.
]Search in Google Scholar
[
Swartz E.R., Mwale M., Hanner R. (2008). A role for barcoding in the study of African fish diversity and conservation. S. Afr. J. Sci., 104: 293-298.
]Search in Google Scholar
[
Taberlet P., Bonin A., Zinger L., Coissac E. (2018). Environmental DNA: For biodiversity research and monitoring. Oxford University Press.
]Search in Google Scholar
[
Tacon A.G., Lemos D., Metian M. (2020). Fish for health: improved nutritional quality of cultured fish for human consumption. Rev. Fish. Sci. Aquac., 28: 449-458.
]Search in Google Scholar
[
Tacon A.G., Metian M. (2018). Food matters: fish, income, and food supply—a comparative analysis. Rev. Fish. Sci. Aquac., 26: 15-28.
]Search in Google Scholar
[
Tanabe S., Miyauchi E., Muneshige A., Mio K., Sato C., Sato M. (2007). PCR method of detecting pork in foods for verifying allergen labeling and for identifying hidden pork ingredients in processed foods. Biosci., Biotechnol., Biochem., 71: 1663-1667.
]Search in Google Scholar
[
Tautz D., Arctander P., Minelli A., Thomas R.H., Vogler A.P. (2002). DNA points the way ahead in taxonomy. Nature, 418: 479-479.
]Search in Google Scholar
[
Teletchea F., Maudet C., Hänni C. (2005). Food and forensic molecular identification: update and challenges. Trends Biotechnol, 23: 359-366.
]Search in Google Scholar
[
Thu P.T., Huang W.C., Chou T.K., Van Quan N., Van Chien P., Li F., Liao T.Y. (2019). DNA barcoding of coastal ray-finned fishes in Vietnam. PloS One, 14: e0222631.
]Search in Google Scholar
[
Trivedi S., Affan R., Alessa A.H.A., Ansari A.A., Dhar B., Mahadani P., Ghosh S.K. (2014). DNA barcoding of Red Sea fishes from Saudi Arabia–the first approach. DNA Barcodes, 2: 17-20.
]Search in Google Scholar
[
Tsoupas A., Papavasileiou S., Minoudi S., Gkagkavouzis K., Petriki O., Bobori D., Sapounidis A., Koutrakis E., Leonardos I., Karaiskou N., Triantafyllidis A. (2022). DNA barcoding identification of Greek freshwater fishes. PloS One, 17: e0263118.
]Search in Google Scholar
[
Ushio M., Murata K., Sado T., Nishiumi I., Takeshita M., Iwasaki W., Miya M. (2018). Demonstration of the potential of environmental DNA as a tool for the detection of avian species. Sci. Rep., 8: 4493.
]Search in Google Scholar
[
Valdivia‐Carrillo T., Rocha‐Olivares A., Reyes‐Bonilla H., Domínguez‐Contreras J.F., Munguia‐Vega A. (2021). Integrating eDNA metabarcoding and simultaneous underwater visual surveys to describe complex fish communities in a marine biodiversity hotspot. Mol. Ecol. Resour., 21: 1558-1574.
]Search in Google Scholar
[
Valentini A., Taberlet P., Miaud C., Civade R., Herder J., Thomsen P. F., Dejean T. (2016). Next‐generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol., 25: 929-942.
]Search in Google Scholar
[
Valentini A., Taberlet P., Miaud C., Civade R., Herder J., Thomsen P.F., Bellemain E., Besnard A., Coissac E., Boyer F., Gaboriaud C. (2016). Next‐generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol., 25: 929-942.
]Search in Google Scholar
[
Wallace L.J., Boilard S.M., Eagle S.H., Spall J.L., Shokralla S., Hajibabaei M. (2012). DNA barcodes for everyday life: Routine authentication of Natural Health Products. Food Res. Int., 49: 446-452.
]Search in Google Scholar
[
Wang H.Y., Dong C.A., Lin H.C. (2017). DNA barcoding of fisheries catch to reveal composition and distribution of cutlassfishes along the Taiwan coast. Fish. Res., 187: 103-109.
]Search in Google Scholar
[
Ward R.D., Zemlak T.S., Innes B.H., Last P.R., Hebert P.D. (2005). DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. Lond., B, Biol. Sci., 360: 1847-1857.
]Search in Google Scholar
[
Wibowo A., Panggabean A.S., Zamroni A., Priatna A., Yusuf H.N. (2018) Using DNA barcode to improve the identification of marine fish larvae, case study coastal water near Jakarta and Banda Sea, Indonesia. Indones. Fish. Research. J., 24: 23-30.10.15578/ifrj.24.1.2018.37-44
]Search in Google Scholar
[
Wibowo A., Panggabean A.S., Zamroni A., Priatna A., Yusuf H.N. (2018). Using DNA barcode to improve the identification of marine fish larvae, case study coastal water near Jakarta and Banda Sea, Indonesia. Indones. Fish. Res. J., 24, 23-30.10.15578/ifrj.24.1.2018.37-44
]Search in Google Scholar
[
Wu Q., Sakata M.K., Wu D., Yamanaka H., Minamoto T. (2021). Application of environmental DNA metabarcoding in a lake with extensive algal blooms. Limnol., 22: 363-370.
]Search in Google Scholar
[
Xiao J., Song N., Gao T., McKay R.J. (2016). Redescription and DNA Barcoding of Sillago indica (Perciformes: Sillaginidae) from the Coast of Pakistan. Pakistan J. Zool., 48. 317-323.
]Search in Google Scholar
[
Xie R., Zhao G., Yang J., Wang Z., Xu Y., Zhang X., Wang Z. (2021). eDNA metabarcoding revealed differential structures of aquatic communities in a dynamic freshwater ecosystem shaped by habitat heterogeneity. Environ. Res., 201: 111602.
]Search in Google Scholar
[
Xing B., Zhang Z., Sun R., Wang Y., Lin M., Wang C. (2020). Mini-DNA barcoding for the identification of commercial fish sold in the markets along the Taiwan Strait. Food Control, 112: 107143.
]Search in Google Scholar
[
Xing R.R., Hu R.R., Han J. X., Deng, T.T., Chen Y. (2020). DNA barcoding and mini-barcoding in authenticating processed animal-derived food: A case study involving the Chinese market. Food Chem., 309: 125653.
]Search in Google Scholar
[
Xing R.R., Hu R.R., Wang N., Zhang J.K., Ge Y.Q., Chen Y. (2021). Authentication of sea cucumber products using NGS-based DNA mini-barcoding. Food Control., 129: 108199.
]Search in Google Scholar
[
Xiong X., Yao L., Ying X., Lu L., Guardone L., Armani A., Xiong X. (2018). Multiple fish species identified from China’s roasted Xue Yu fillet products using DNA and mini-DNA barcoding: Implications on human health and marine sustainability. Food Control, 88: 123-130.
]Search in Google Scholar
[
Xiong X., Yuan F., Huang M., Xiong X. (2020). Exploring the possible reasons for fish fraud in China based on results from monitoring sardine products sold on Chinese markets using DNA barcoding and real time PCR. Food Addit. Contam.: Part A, 37: 193-204.
]Search in Google Scholar
[
Yamamoto S., Masuda R., Sato Y., Sado T., Araki H., Kondoh M., Minamoto T., Miya M. (2017). Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Sci. Rep., 7: 40368.
]Search in Google Scholar
[
Yan S., Lai G., Li L., Xiao H., Zhao M., Wang M. (2016). DNA barcoding reveals mislabeling of imported fish products in Nansha new port of Guangzhou, Guangdong province, China. Food Chem., 202; 116-119.10.1016/j.foodchem.2016.01.13326920274
]Search in Google Scholar
[
Zahn R.J., Silva A.J., Hellberg R.S. (2020). Development of a DNA mini-barcoding protocol targeting COI for the identification of elasmobranch species in shark cartilage pills. Food Control, 109: 106918.
]Search in Google Scholar
[
Zhang J.B., Hanner R. (2011). DNA barcoding is a useful tool for the identification of marine fishes from Japan. Biochem. Syst. Ecol., 39: 31-42.
]Search in Google Scholar
[
Zhang J., Hanner R. (2012). Molecular approach to the identification of fish in the South China Sea. PLoS One, 7: e30621.
]Search in Google Scholar
[
Zhang S., Lu Q., Wang Y., Wang X., Zhao J., Yao M. (2020). Assessment of fish communities using environmental DNA: Effect of spatial sampling design in lentic systems of different sizes. Mol. Ecol. Res., 20: 242-255.
]Search in Google Scholar
[
Zhang S., Zhao J., Yao M. (2020). A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish. Methods Ecol. Evol., 11: 1609-1625.
]Search in Google Scholar
[
Zimmermann J., Hajibabaei M., Blackburn D.C., Hanken J., Cantin E., Posfai J., Evans T.C. (2008). DNA damage in preserved specimens and tissue samples: a molecular assessment. Front Zool., 5: 1-13.
]Search in Google Scholar