INFORMAZIONI SU QUESTO ARTICOLO

Cita

Abels E.R., Breakefield X.O. (2016). Introduction to extracellular vesicles: Biogenesis, RNA cargo selection, content, release, and uptake. Cell. Mol. Neurobiol., 36: 301–312. Search in Google Scholar

Actor J.K., Hwang S.A., Kruzel M.L. (2009). Lactoferrin as a natural immune modulator. Curr. Pharm. Design, 15: 1956–1973. Search in Google Scholar

Adriano B., Cotto N.M., Chauhan N., Jaggi M., Chauhan S.C., Yallapu M.M. (2021). Milk exosomes: Nature's abundant nanoplatform for theranostic applications. Bioactive Mat., 6: 2479–2490. Search in Google Scholar

Ahmed F., Tamma M., Pathigadapa U., Reddanna P., Yenuganti V.R. (2022). Drug loading and functional efficacy of cow, buffalo, and goat milk-derived exosomes: a comparative study. Mol. Pharmac., 19: 763–774. Search in Google Scholar

Akers J.C., Gonda D., Kim R., Carter B.S., Chen C.C. (2013). Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J. Neurooncol., 113: 1–11. Search in Google Scholar

Ali M.Z., Qureshi A.S., Usman M., Kausar R., Ateeq M.K. (2017). Comparative effect of camel milk and black seed oil in induced diabetic female albino rats. Pak. Vet. J., 37: 293–298. Search in Google Scholar

Al-Majali A.M., Ismail Z.B., Al-Hami Y., Nour A.Y. (2007). Lactoferrin concentration in milk from camels (Camelus dromedarius) with and without subclinical mastitis. Int. J. App. Res. Vet. Med., 5: 120. Search in Google Scholar

Almahdy O., El-Fakharany E.M., El-Dabaa E., Redwan E.M. (2011). Examination of the activity of camel milk casein against hepatitis C virus (genotype-4a) and its apoptotic potential in hepatoma and hela cell lines. Hepat Mon., 11: 724–730. Search in Google Scholar

Alzahrani F.A., El-Magd M.A., Abdelfattah-Hassan A., Saleh A.A., Saadeldin I.M., El-Shetry E.S., Badawy A.A., Alkarim S. (2018). Potential effect of exosomes derived from cancer stem cells and MSCs on progression of DEN-induced HCC in rats. St. Cell. Int., 2018: 8058979. Search in Google Scholar

Anand P.K. (2010). Exosomal membrane molecules are potent immune response modulators. Commun. Integr. Biol., 3: 405–408. Search in Google Scholar

Arab H.H., Salama S.A., Maghrabi I.A. (2018). Camel milk ameliorates 5-fluorouracil-induced renal injury in rats: targeting MAPKs, NF-κB and PI3K/Akt/eNOS pathways. Cell. Physiol. Biochem., 46: 1628–1642. Search in Google Scholar

Artym J., Zimecki M., Kruzel M.L. (2003). Reconstitution of the cellular immune response by lactoferrin in cyclophosphamide-treated mice is correlated with renewal of T cell compartment. Immunobiology, 207: 197–205. Search in Google Scholar

Badawy A.A., El-Magd M.A., AlSadrah S.A. (2018). Therapeutic effect of camel milk and its exosomes on MCF7 cells in vitro and in vivo. Integr. Cancer Ther., 17: 1235–1246. Search in Google Scholar

Badawy A.A., Othman R.Q.A., El-Magd M.A. (2021). Effect of combined therapy with camel milk-derived exosomes, tamoxifen, and hesperidin on breast cancer. Mol. Cell. Toxicol, 1–10. Search in Google Scholar

Baier S.R., Nguyen C., Xie F., Wood J.R., Zempleni J. (2014). MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. J. Nutr., 144: 1495–1500. Search in Google Scholar

Bhattacharyya A., Chattopadhyay R., Mitra S., Crowe S.E. (2014). Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev., 94: 329–354. Search in Google Scholar

Bunggulawa E.J., Wang W., Yin T., Wang N., Durkan C., Wang Y., Wang G. (2018). Recent advancements in the use of exosomes as drug delivery systems. J. Nanobiotech., 16: 1–13. Search in Google Scholar

Chen X., Kang R., Kroemer G., Tang D. (2021). Broadening horizons: the role of ferroptosis in cancer. Nat. Rev. Clin. Oncol., 18: 280–296. Search in Google Scholar

Cintio M., Polacchini G., Scarsella E., Montanari T., Stefanon B., Colitti M. (2020). MicroRNA milk exosomes: From cellular regulator to genomic marker. Animals, 10: 1126. Search in Google Scholar

Colombo M., Raposo G., Théry C. (2014). Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Ann. Rev. Cell Dev. Biol., 30: 255–289. Search in Google Scholar

Daneshmandi S., Nourizadeh M., Pourpak Z., Pourfathollah A.A. (2017). Eliciting Th1 immune response using casein (alpha s1)- loaded dendritic cells. Iran. J. Aller. Asth. Immunol., 159–168. Search in Google Scholar

Diakos C.I., Charles K.A., McMillan D.C., Clarke S.J. (2014). Cancerrelated inflammation and treatment effectiveness. Lancet. Oncol., 15: e493–e503. Search in Google Scholar

Ebaid H. (2014). Promotion of immune and glycaemic functions in streptozotocin-induced diabetic rats treated with un-denatured camel milk whey proteins. Nutr. Metab., 11: 1–13. Search in Google Scholar

Ebaid H., Ahmed O.M., Mahmoud A.M., Ahmed R.R. (2013). Limiting prolonged inflammation during proliferation and remodeling phases of wound healing in streptozotocin-induced diabetic rats supplemented with camel undenatured whey protein. BMC Immunol., 14: 31–31. Search in Google Scholar

El Agamy E.I., Ruppanner R., Ismail A., Champagne C.P., Assaf R. (1992). Antibacterial and antiviral activity of camel milk protective proteins. J. Dairy Res., 59: 169–175. Search in Google Scholar

Elgazar A.A., Selim N.M., Abdel-Hamid N.M., El-Magd M.A., El Hefnawy H.M. (2018). Isolates from Alpinia officinarum Hance attenuate LPS-induced inflammation in HepG2: Evidence from in silico and in vitro studies. Phyto. Res., 32: 1273–1288. Search in Google Scholar

El-Kattawy A.M., Algezawy O., Alfaifi, M.Y., Noseer E.A., Hawsawi Y.M., Alzahrani O.R., Algarni A., Kahilo K.A., El-Magd M.A. (2021). Therapeutic potential of camel milk exosomes against HepaRG cells with potent apoptotic, anti-inflammatory, and antiangiogenesis effects for colostrum exosomes. Biomed. Pharma., 143: 112220. Search in Google Scholar

Elsharkasy O.M., Nordin J.Z., Hagey D.W., de Jong O.G., Schiffelers R.M., Andaloussi S.E., Vader P. (2020). Extracellular vesicles as drug delivery systems: Why and how? Advan. Drug Del. Rev., 159: 332–343. Search in Google Scholar

Fernandis A.Z., Prasad A., Band H., Klösel R., Ganju R.K. (2004). Regulation of CXCR4-mediated chemotaxis and chemoinvasion of breast cancer cells. Oncogene, 23: 157–167. Search in Google Scholar

Ghazzawi H. (2020). Health-improving and disease-preventing potential of camel milk against chronic diseases and autism: camel milk and chronic diseases. Handbook of Research on Health and Environmental Benefits of Camel Products. IGI Global, pp. 155–184. Search in Google Scholar

Grigor’eva A., Dyrkheeva N., Bryzgunova O., Tamkovich S., Chelobanov B., Ryabchikova E. (2017). Contamination of exosome preparations, isolated from biological fluids. Biochemistry (Moscow), Suppl. Series Biomed. Chem., 11: 265–271. Search in Google Scholar

Grivennikov S.I., Greten F.R., Karin M. (2010). Immunity, inflammation, and cancer. Cell, 140: 883–899. Search in Google Scholar

Gu Y., Li M., Wang T., Liang Y., Zhong Z., Wang X., Zhou Q., Chen L., Lang Q., He Z., Chen X., Gong J., Gao X., Li X., Lv X. (2012). Lactation-related microRNA expression profiles of porcine breast milk exosomes. PLoS One, 7: e43691–e43691. Search in Google Scholar

Habib H.M., Ibrahim W.H., Schneider-Stock R., Hassan H.M. (2013). Camel milk lactoferrin reduces the proliferation of colorectal cancer cells and exerts antioxidant and DNA damage inhibitory activities. Food Chem., 141: 148–152. Search in Google Scholar

Han J., Bae S.Y., Oh S.J., Lee J., Lee J.H., Lee H.c., Lee S.K., Kil W.H., Kim S.W., Nam S.J. (2014). Zerumbone suppresses IL-1β- induced cell migration and invasion by inhibiting IL-8 and MMP- 3 expression in human triple-negative breast cancer cells. Phyto. Res., 28: 1654–1660. Search in Google Scholar

Hasson S.S., Al-Busaidi J.Z., Al-Qarni Z.A., Rajapakse S., Al-Bahlani S., Idris M.A., Sallam T.A. (2015). In vitro apoptosis triggering in the BT-474 human breast cancer cell line by lyophilised camel’s milk. Asian. Pac. J. Cancer Prev., 16: 6651–6661. Search in Google Scholar

He J., Chen Q., Yi L., Ming L., Ji R. (2021). Proteomics and microstructure profiling of Bactrian camel milk protein after homogenization. LWT, 152: 112287. Search in Google Scholar

Hou C.X., Sun N.N., Han W., Meng Y., Wang C.X., Zhu Q.H., Tang Y.T., Ye J.H. (2022). Exosomal microRNA-23b-3p promotes tumor angiogenesis and metastasis by targeting PTEN in salivary adenoid cystic carcinoma. Carcinogenesis, 43: 682–692. Search in Google Scholar

Ibrahim H.M., Mohammed-Geba K., Tawfic A.A., El-Magd M.A. (2019). Camel milk exosomes modulate cyclophosphamide-induced oxidative stress and immuno-toxicity in rats. Food Func., 10: 7523–7532. Search in Google Scholar

Iigo M., Alexander D.B., Long N., Xu J., Fukamachi K., Futakuchi M., Takase M., Tsuda H. (2009). Anticarcinogenesis pathways activated by bovine lactoferrin in the murine small intestine. Biochimie, 91: 86–101. Search in Google Scholar

Izadi A., Khedmat L., Mojtahedi S.Y. (2019). Nutritional and therapeutic perspectives of camel milk and its protein hydrolysates: A review on versatile biofunctional properties. J. Func. Foods, 60: 103441. Search in Google Scholar

Jiao R., Sun S., Gao X., Cui R., Cao G., Wei H., Wang S., Zhang Z., Bai H. (2020). A polyethylene glycol-based method for enrichment of extracellular vesicles from culture supernatant of human ovarian cancer cell line A2780 and body fluids of high-grade serous carcinoma patients. Canc. Manag. Res., 12: 6291. Search in Google Scholar

Jilo K., Tegegne D. (2016). Chemical composition and medicinal values of camel milk. Int. J. Res. Stud. Biosci., 4: 13–25. Search in Google Scholar

Keller S., Ridinger J., Rupp A.-K., Janssen J.W., Altevogt P. (2011). Body fluid derived exosomes as a novel template for clinical diagnostics. J. Transl. Med., 9: 1–9. Search in Google Scholar

Khan M.Z., Xiao J., Ma Y., Ma J., Liu S., Khan A., Khan J.M., Cao Z. (2021). Research development on anti-microbial and antioxidant properties of camel milk and its role as an anti-cancer and antihepatitis agent. Antioxidants, 10: 788. Search in Google Scholar

Korashy H.M., Maayah Z.H., Abd-Allah A.R., El-Kadi A.O., Alhaider A.A. (2012). Camel milk triggers apoptotic signaling pathways in human hepatoma HepG2 and breast cancer MCF7 cell lines through transcriptional mechanism. J. Biomed. Biotechnol., 2012: 593195. Search in Google Scholar

Laghi L., Bianchi P., Miranda E., Balladore E., Pacetti V., Grizzi F., Allavena P., Torri V., Repici A., Santoro A., Mantovani A., Roncalli M., Malesci A. (2009). CD3+ cells at the invasive margin of deeply invading (pT3–T4) colorectal cancer and risk of post-surgical metastasis: a longitudinal study. Lancet. Oncol., 10: 877–884. Search in Google Scholar

Lázaro-Ibáñez E., Sanz-Garcia A., Visakorpi T., Escobedo-Lucea C., Siljander P., Ayuso-Sacido Á., Yliperttula M. (2014). Different gDNA content in the subpopulations of prostate cancer extracellular vesicles: apoptotic bodies, microvesicles, and exosomes. Prostate, 74: 1379–1390. Search in Google Scholar

Lei G., Zhuang L., Gan B. (2022). Targeting ferroptosis as a vulnerability in cancer. Nat. Rev. Cancer, 22: 381–396. Search in Google Scholar

Lötvall J., Hill A.F., Hochberg F., Buzás E.I., Di Vizio D., Gardiner C., Gho Y.S., Kurochkin I.V., Mathivanan S., Quesenberry P., Sahoo S., Tahara H., Wauben M.H., Witwer K.W., Théry C. (2014). Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles, 3: 26913. Search in Google Scholar

Malmberg K.-J., Bryceson Y.T., Carlsten M., Andersson S., Björklund A., Björkström N.K., Baumann B.C., Fauriat C., Alici E., Dilber M.S., Ljunggren H.-G. (2008). NK cell-mediated targeting of human cancer and possibilities for new means of immunotherapy. Cancer Immunol. Immunother., 57: 1541–1552. Search in Google Scholar

Mauriz J.L., Collado P.S., Veneroso C., Reiter R.J., González-Gallego J. (2013). A review of the molecular aspects of melatonin’s antiinflammatory actions: recent insights and new perspectives. J. Pineal Res., 54: 1–14. Search in Google Scholar

Mincheva-Nilsson L., Baranov V. (2010). The role of placental exosomes in reproduction. Amer. J. Rep. Immunol., 63: 520–533. Search in Google Scholar

Mostafa G.A., Bjørklund G., Al-Ayadhi L. (2021). Therapeutic effect of camel milk in children with autism: its impact on serum levels of vasoactive intestinal peptide. Int. J. Med. Sci. Clin. Invent., 8: 5698–5707. Search in Google Scholar

Ngu A., Wang S., Wang H., Khanam A., Zempleni J. (2022). Milk exosomes in nutrition and drug delivery. Am. J. Physiol.-Cell Physiol., 322: C865–C874. Search in Google Scholar

Nishida N., Yano H., Nishida T., Kamura T., Kojiro M. (2006). Angiogenesis in cancer. Vasc. Heal. Risk Manag., 2: 213–219. Search in Google Scholar

Record M., Carayon K., Poirot M., Silvente-Poirot S. (2014). Exosomes as new vesicular lipid transporters involved in cell–cell communication and various pathophysiologies. Biochim. Biophys. Acta -Mol. Cell Biol. Lip., 1841: 108–120. Search in Google Scholar

Romli F., Abu N., Khorshid F.A., Syed Najmuddin S.U.F., Keong Y.S., Mohamad N.E., Hamid M., Alitheen N.B., Nik Abd Rahman N.M.A. (2017). The growth inhibitory potential and antimetastatic effect of camel urine on breast cancer cells in vitro and in vivo. Integr. Cancer Ther., 16: 540–555. Search in Google Scholar

Saltanat H., Li H., Xu Y., Wang J., Liu F., Geng X.H. (2009). The influences of camel milk on the immune response of chronic hepatitis B patients. Ch. J. Cell. Mol. Immunol., 25: 431–433. Search in Google Scholar

Santos-Coquillat A., González M.I., Clemente-Moragón A., González-Arjona M., Albaladejo-García V., Peinado H., Muñoz J., Embún P.X., Ibañez B., Oliver E., Desco M., Salinas B. (2022). Goat milk exosomes as natural nanoparticles for detecting inflammatory processes by optical imaging. Small, 18: 2105421. Search in Google Scholar

Sedykh S., Kuleshova A., Nevinsky G. (2020). Milk exosomes: Perspective agents for anticancer drug delivery. Int. J. Mol. Sci., 21: 6646. Search in Google Scholar

Shariatikia M., Behbahani M., Mohabatkar H. (2017). Anticancer activity of cow, sheep, goat, mare, donkey and camel milks and their caseins and whey proteins and in silico comparison of the caseins. Mol. Biol. Res. Commun., 6: 57–64. Search in Google Scholar

Swelum A.A.A., Hashem N.M., Abo-Ahmed A.I., Abd El-Hack M.E., Abdo M. (2020). The role of heat shock proteins in reproductive functions. In: Heat shock proteins, Asea A.A.A., Kaur P. (eds). Springer Nature Switzerland, pp. 407–427. Search in Google Scholar

Wong R.S. (2011). Apoptosis in cancer: from pathogenesis to treatment. J. Exper. Clin. Cancer Res., 30: 1–14. Search in Google Scholar

Yan F., Zhong Z., Wang Y., Feng Y., Mei Z., Li H., Chen X., Cai L., Li C. (2020). Exosome-based biomimetic nanoparticles targeted to inflamed joints for enhanced treatment of rheumatoid arthritis. J. Nanobiotechnol., 18: 1–15. Search in Google Scholar

Yang J., Dou Z., Peng X., Wang H., Shen T., Liu J., Li G., Gao Y. (2019). Transcriptomics and proteomics analyses of anti-cancer mechanisms of TR35 – An active fraction from Xinjiang Bactrian camel milk in esophageal carcinoma cell. Clin. Nutr., 38: 2349–2359. Search in Google Scholar

Yassin A.M., Abdel Hamid M.I., Farid O.A., Amer H., Warda M. (2016). Dromedary milk exosomes as mammary transcriptome nano-vehicle: Their isolation, vesicular and phospholipidomic characterizations. J. Adv. Res., 7: 749–756. Search in Google Scholar

Zheng N., Min L., Li D., Tan S., Gao Y., Wang J. (2022). Occurrence of aflatoxin M1 in cow, goat, buffalo, camel, and yak milk in China in 2016. Toxins, 14: 870. Search in Google Scholar

eISSN:
2300-8733
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine