Accesso libero

Brain-Derived Neurotrophic Factor Affects mRNA and miRNA Expression of the Appetite Regulating Centre in the Sheep Arcuate Nucleus

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Balthasar N., Dalgaard L.T., Lee C.E., Yu J., Funahashi H., Williams T., Ferreira M., Tang V., Mcgovern R.A., Kenny C.D., Christiansen L.M., Edelstein E., Choi B., Boss O., Aschkenasi C., Zhang C., Mountjoy K., Kishi T., Elmquist J.K., Lowell B.B. (2005). Divergence of Melanocortin Pathways in the Control of Food Intake and Energy Expenditure. Cell, 123: 493–505.10.1016/j.cell.2005.08.035Search in Google Scholar

Barde Y.A., Edgar D., Thoenen H. (1982). Purification of a new neurotrophic factor from mammalian brain. EMBO J., 1: 549–553.10.1002/j.1460-2075.1982.tb01207.xSearch in Google Scholar

Barnea A., Roberts J. (2001): Induction of functional and morphological expression of neuropeptide Y (NPY) in cortical cultures by brain-derived neurotrophic factor (BDNF). Evidence for a requirement for extracellular-regulated kinase (ERK)-dependent and ERK-independent mechanisms. Brain Res., 919: 57–69.10.1016/S0006-8993(01)02999-7Search in Google Scholar

Benes V., Castoldi M. (2010). Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods, 50: 244–249.10.1016/j.ymeth.2010.01.026Search in Google Scholar

Byerly M.S., Simon J., Lebihan-Duval E., Duclos M.J., Cogburn L.A., Porter T.E. (2009). Effects of BDNF, T3, and corticosterone on expression of the hypothalamic obesity gene network in vivo and in vitro. AJP Regul. Integr. Comp. Physiol. 296: R1180–R1189.10.1152/ajpregu.90813.2008Search in Google Scholar

Cordeira J.W., Frank L., Sena-Esteves M., Pothos E.N., Rios, M. (2010). Brain-Derived Neurotrophic Factor Regulates Hedonic Feeding by Acting on the Mesolimbic Dopamine System. J. Neurosci., 30: 2533–2541.10.1523/JNEUROSCI.5768-09.2010Search in Google Scholar

Croll S.D., Chesnutt C.R., Rudge J.S., Acheson A., Ryan T.E., Siuciak J.A., DiStefano P.S., Wiegand S.J., Lindsay R.M. (1998). Co-infusion with a TrkB-Fc receptor body carrier enhances BDNF distribution in the adult rat brain. Exp. Neurol., 152: 20–33.10.1006/exnr.1998.6836Search in Google Scholar

Croll S.D., Wiegand S.J., Anderson K.D., Lindsay R.M., Nawa H. (1994). Regulation of Neuropeptides in Adult Rat Forebrain by the Neurotrophins BDNF and NGF. Eur. J. Neurosci., 6: 1343–1353.10.1111/j.1460-9568.1994.tb00325.xSearch in Google Scholar

De Souza M.J., Leidy H.J., O’Donnell E., Lasley B., Williams N.I. (2004). Fasting ghrelin levels in physically active women: Relationship with menstrual disturbances and metabolic hormones. J. Clin. Endocrinol. Metab., 89: 3536–3542.10.1210/jc.2003-032007Search in Google Scholar

Dittrich F., Ochs G., Große-Wilde A., Berweiler U., Yan Q., Miller J.A., Toyka K. V., Sendtner M. (1996). Pharmacokinetics of intrathecally applied BDNF and effects on spinal motoneurons. Exp. Neurol., 141: 225–239.10.1006/exnr.1996.0157Search in Google Scholar

Evans J.J., Anderson G.M. (2012). Balancing ovulation and anovulation: Integration of the reproductive and energy balance axes by neuropeptides. Hum. Reprod. Update, 18: 313–332.10.1093/humupd/dms004Search in Google Scholar

Fenichel R.M., Dominguez J.E., Mayer L., Walsh B.T., Boozer C., Warren M.P. (2008). Leptin levels and luteinizing hormone pulsatility in normal cycling women and their relationship to daily changes in metabolic rate. Fertil. Steril. 90: 1161–1168.10.1016/j.fertnstert.2007.07.1350Search in Google Scholar

Grenda A., Budzyński M., Filip A.A. (2013). Biogeneza cząsteczek mikroRNA oraz ich znaczenie w powstawaniu i przebiegu wybranych zaburzeń hematologicznych. Postepy Hig. Med. Dosw., 67: 174–185.10.5604/17322693.1038361Search in Google Scholar

Grill H.J., Ginsberg A.B., Seeley R.J., Kaplan J.M. (1998). Brainstem Application of Melanocortin Receptor Ligands Produces Long-Lasting Effects on Feeding and Body Weight. J. Neurosci., 18: 10128–10135.10.1523/JNEUROSCI.18-23-10128.1998Search in Google Scholar

Hukowska-Szematowicz B., Deptuła W. (2010). Biologiczna rola mikroRNA (miRNA) nowe dane. Postępy Biol. Komórki, 37: 585–597.Search in Google Scholar

Kawashima H., Numakawa T., Kumamaru E., Adachi N., Mizuno H., Ninomiya M., Kunugi H., Hashido K., (2010). Glucocorticoid attenuates brain-derived neurotrophic factor-dependent upregulation of glutamate receptors via the suppression of microRNA-132 expression. Neuroscience, 165: 1301–1311.10.1016/j.neuroscience.2009.11.057Search in Google Scholar

Kishi T., Aschkenasi C.J., Lee C.E., Mountjoy K.G., Saper C.B., Elmquist J.K. (2003). Expression of Melanocortin 4 Receptor mRNA in the Central Nervous System of the Rat. J. Comp. Neurol., 457: 213–235.10.1002/cne.10454Search in Google Scholar

Lunstra D.D., Christenson R. K. (1981). Synchronization of Ewes during Anestrus: Influence of Time of Year and Interval to Onset of Estrus on Conception Rate. Journal of Animal Science, 53: 448-45710.2527/jas1981.532448x7319947Search in Google Scholar

Liu H., Kishi T., Roseberry A.G., Cai X., Lee C.E., Montez J.M., Friedman J.M., Elmquist J.K. (2003). Transgenic Mice Expressing Green Fluorescent Protein under the Control of the Melanocortin-4 Receptor Promoter. J. Neurosci., 23: 7143–7154.10.1523/JNEUROSCI.23-18-07143.2003Search in Google Scholar

Lopaschuk G.D., Ussher J.R., Jaswal J.S. (2010). Targeting Intermediary Metabolism in the hypothalamus as a mechanism to regulate appetite. Pharmacol Rev., 62: 237–264.10.1124/pr.109.002428Search in Google Scholar

Mellios N., Huang H.S., Grigorenko A., Rogaev E., Akbarian S. (2008). A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Hum. Mol. Genet., 17: 3030–3042.10.1093/hmg/ddn201Search in Google Scholar

Navarro V.M., Fernández-Fernández R., Nogueiras R., Vigo E., Tovar S., Chartrel N., Le Marec O., Leprince J., Aguilar E., Pinilla L., Dieguez C., Vaudry H., Tena-Sempere M., (2006). Novel role of 26RFa, a hypothalamic RFamide orexigenic peptide, as putative regulator of the gonadotropic axis. J. Physiol. 573: 237–249.10.1113/jphysiol.2006.106856Search in Google Scholar

Nicholson J.R., Peter J.C., Lecourt A.C., Barde Y.A., Hofbauer K.G. (2007). Melanocortin-4 receptor activation stimulates hypothalamic brain-derived neurotrophic factor release to regulate food intake, body temperature and cardiovascular function. J. Neuroendocrinol., 19: 974–982.10.1111/j.1365-2826.2007.01610.xSearch in Google Scholar

Peiris T. S., Machaalani R., Waters K.A. (2004). Brain-derived neurotrophic factor mRNA and protein in the piglet brainstem and effects of Intermittent Hypercapnic Hypoxia. Brain Res., 1029: 11–23.10.1016/j.brainres.2004.09.024Search in Google Scholar

Pfaffl M.W., Horgan G.W., Dempfle L. (2002). Relative expression software tool (REST ©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res., 30: e36.10.1093/nar/30.9.e36Search in Google Scholar

Pfaffl M.W., Tichopad A., Prgomet C., Neuvians T.P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity : BestKeeper – Excel-based tool using pair-wise correlations. Biotechnol. Lett., 26: 509–515.10.1023/B:BILE.0000019559.84305.47Search in Google Scholar

Polkowska J., Wójcik-Gładysz A., Wańkowska M., Bruneau G., Tillet Y. (2008). Prepubertal changes in the synthesis, storage and release of the somatostatin in the hypothalamus of female lambs: A morphofunctional study. J. Chem. Neuroanat., 36: 53–58.10.1016/j.jchemneu.2008.05.007Search in Google Scholar

Schneeberger M., Gomis R., Claret M. (2014). Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J. Endocrinol., 220: T25-T46.10.1530/JOE-13-0398Search in Google Scholar

Strzetelski J.A., Brzóska F., Kowalski Z.M., Osięgłowski S. (2014). Zalecenia Żywieniowe dla Przeżuwaczy i Tabele wartości pokarmowej pasz. Inst. Zootech. PIB, Kraków.Search in Google Scholar

Sullivan S.D., DeFazio R.A., Moenter S.M. (2003). Metabolic Regulation of Fertility through Presynaptic and Postsynaptic Signaling to Gonadotropin-Releasing Hormone Neurons. J. Neurosci., 23: 8578–8585.10.1523/JNEUROSCI.23-24-08578.2003Search in Google Scholar

Szlis M., Krawczyńska A., Polkowska J., Wójcik-Gładysz A. (2015). Neuromodulatory influence of obestatin on GnRH/LH axis activity and NPY gene expression in peripubertal sheep. Reproduction in Domestic Animals, 50 (Suppl 3), 79. https://doi.org/10.1111/rda.1257910.1111/rda.12579Search in Google Scholar

Szlis M., Polkowska J., Skrzeczyńska E., Przybył B.J., Wójcik-Gładysz A., (2018); Does obestatin modulate the hypothalamic appetite-regulating network in peripubertal sheep? J. Anim. Physiol. Anim. Nutr., 102: 690–700.10.1111/jpn.12879Search in Google Scholar

Takei N., Furukawa K., Hanyu O., Sone H., Nawa H. (2014). A possible link between BDNF and mTOR in control of food intake. Front. Psychol., 5: 1–6.10.3389/fpsyg.2014.01093Search in Google Scholar

Tillet Y., Picard S., Bruneau G., Ciofi P., Wańkowska M., Wójcik-Gładysz A., Polkowska J. (2010). Hypothalamic arcuate neuropeptide Y-neurons decrease periventricular somatostatin-neuronal activity before puberty in the female lamb: Morphological arguments. J. Chem. Neuroanat., 40: 265–271.10.1016/j.jchemneu.2010.07.003Search in Google Scholar

Traczyk W. and Przekop F. (1963). A method for testing the function of the hypothalamus and pituitary in the sheep in chronic experiments. Acta. Physiol. Pol., 14: 217 – 226.Search in Google Scholar

Unger T.J., Calderon G.A., Bradley L.C., Sena-Esteves M., Rios M. (2007). Selective Deletion of Bdnf in the Ventromedial and Dorsomedial Hypothalamus of Adult Mice Results in Hyperphagic Behavior and Obesity. J. Neurosci., 27: 14265–14274.10.1523/JNEUROSCI.3308-07.2007Search in Google Scholar

Van Wynsberghe P.M., Chan S.P., Slack F.J., Pasquinelli A.E. (2011). Analysis of microRNA Expression and Function. Methods in Cell Biology. 106: 219-252.10.1016/B978-0-12-544172-8.00008-6Search in Google Scholar

Wan S., Browning, K.N., Coleman F.H., Sutton G., Zheng H., Butler A., Berthoud H., Travagli R.A. (2008). Presynaptic Melanocortin-4 Receptors on Vagal Afferent Fibers Modulate the Excitability of Rat Nucleus Tractus Solitarius Neurons. J. Neurosci., 28: 4957–4966.10.1523/JNEUROSCI.5398-07.2008Search in Google Scholar

Wang C., Bomberg E., Billington C., Levine A., Kotz C.M. (2007). Brain-derived neurotrophic factor in the hypothalamic paraventricular nucleus increases energy expenditure by elevating metabolic rate 55417: 992–1002.10.1152/ajpregu.00516.200617567712Search in Google Scholar

Welento J., Szteyn S., Milart Z. (1969). Observations on the stereotaxic configuration of the hypothalamus nuclei in the sheep. Anatom. Anz., 124: 1–27.Search in Google Scholar

Williams D.L., Kaplan J.M., Grill H.J. (2000). The Role of the Dorsal Vagal Complex and the Vagus Nerve in Feeding Effects of Melanocortin-3/4 Receptor Stimulation. Endocrinology, 141: 1332–1337.10.1210/endo.141.4.7410Search in Google Scholar

Wójcik-Gładysz A., Szlis M., (2016). Hypothalamo-gastrointestinal axis - role in food intake regulation. J. Anim. Feed Sci., 25: 97-10810.22358/jafs/65569/2016Search in Google Scholar

Wójcik-Gładysz A., Szlis M., Misztal A., Przybył B.J., Polkowska, J. (2018). Obestatin stimulates the somatotrophic axis activity in sheep. Brain Res., 1678: 278–287.10.1016/j.brainres.2017.10.036Search in Google Scholar

Wójcik-Gładysz A., Wańkowska M., Gajewska A., Misztal T., Szlis M., Polkowska J. (2014). The effect of intracerebroventricular infusions of ghrelin on the secretory activity of the GnRH / LH system in peripubertal ewes. J. Anim. Feed Sci., 23: 299–308.10.22358/jafs/65665/2014Search in Google Scholar

Wójcik-Gładysz A., Wańkowska M., Gajewska A., Misztal T., Zielińska-Górska M., Szlis M., Polkowska J. (2016). Effects of intracerebroventricular infusions of ghrelin on secretion of follicle-stimulating hormone in peripubertal female sheep. Reprod. Fertil. Dev., 28: 2065–2074.10.1071/RD16028Search in Google Scholar

Xapelli S., Bernardino L., Ferreira R., Grade S., Silva A.P., Salgado J.R., Cavadas C., Grouzmann E., Poulsen F.R., Jakobsen B., Oliveira C.R., Zimmer J., Malva J.O. (2008). Interaction between neuropeptide Y (NPY) and brain-derived neurotrophic factor in NPY-mediated neuroprotection against excitotoxicity: A role for microglia. Eur. J. Neurosci., 27: 2089–2102.10.1111/j.1460-9568.2008.06172.xSearch in Google Scholar

Xu B., Goulding E.H., Zang K., Cepoi D., Cone R.D., Jones K.R., Tecott L.H., Reichardt L.F. (2003). Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat. Neurosci., 6: 736–742.10.1038/nn1073Search in Google Scholar

Zheng H., Patterson L.M., Phifer C.B., Berthoud H., Patterson L.M., Phifer C.B. (2005). Brain stem melanocortinergic modulation of meal size and identification of hypothalamic POMC projections. Am. J. Physiol. - Regul. Integr. Comp. Physiol., 289: R247–R258.10.1152/ajpregu.00869.2004Search in Google Scholar

Abstract from V Congress of Polish Society of Neuroendocrinology, 21-22 September, 2018, Kraków; https://journals.viamedica.pl/endokrynologia_polska/issue/view/4394 (access 22 October, 2019)Search in Google Scholar

eISSN:
2300-8733
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine