Accesso libero

The Effects of Deoxynivalenol (DON) on the Gut Microbiota, Morphology and Immune System of Chicken – A Review

INFORMAZIONI SU QUESTO ARTICOLO

Cita

2006/576/EC (2006). Commission recommendation of 17th August 2006 on the presence of deoxyni-valenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off. J. Eur. Union L229, pp. 7–9.Search in Google Scholar

Alassane-Kpembi I., Puel O., Oswald I.P. (2015). Toxicological interactions between the mycotoxins deoxynivalenol, nivalenol and their acetylated derivatives in intestinal epithelial cells. Arch Toxicol., 89:1337–1346.10.1007/s00204-014-1309-4Search in Google Scholar

Andretta I., Kipper M., Lehnen C.R., Hauschild L., Vale M.M., Lovatto P.A. (2011). Meta-analytical study of productive and nutritional interactions of mycotoxins in broilers. Poultry Sci., 90: 1934–1940.10.3382/ps.2011-01470Search in Google Scholar

Antonissen G., van Immerseel F., Pasmans F., Ducatelle R., Janssens G.P.J., de Baere S. (2015). Mycotoxins deoxynivalenol and fumonisins alter the extrinsic component of intestinal barrier in broiler chickens. J. Agric. Food Chem., 63: 10846–10855.10.1021/acs.jafc.5b04119Search in Google Scholar

Awad W.A., Böhm J., Razzazi-Fazeli E., Hulan H.W., Zentek J. (2004). Effects of deoxynivalenol on general performance and electrophysiological properties of intestinal mucosa of broiler chickens. Poultry Sci., 83: 1964–1972.10.1093/ps/83.12.1964Search in Google Scholar

Awad W.A., Razzazi-Fazeli E., Böhm J., Ghareeb K., Zentek J. (2006 a). Effect of addition of a probiotic microorganism to broiler diets contaminated with deoxynivalenol on performance and histological alterations of intestinal villi of broiler chickens. Poultry Sci., 85: 974–979.10.1093/ps/85.6.97416776464Search in Google Scholar

Awad W.A., Böhm J., Razzazi-Fazeli E., Zentek J. (2006 b). Effects of feeding deoxynivalenol contaminated wheat on growth performance, organ weights and histological parameters of the intestine of broiler chickens. J. Anim. Nutr. Anim. Physiol., 90: 32–37.10.1111/j.1439-0396.2005.00616.x16422767Search in Google Scholar

Awad W.A., Hess M., Twaruzek M., Grajewski J., Kosicki R., Böhm J. (2011 a). The impact of the Fusarium mycotoxin deoxynivalenol on the health and performance of broiler chickens. Int. J. Mol. Sci., 12: 7996–8012.10.3390/ijms12117996323345222174646Search in Google Scholar

Awad W.A., Vahjen W., Aschenbach J.R., Zentek J. (2011 b). A diet naturally contaminated with the Fusarium mycotoxin deoxynivalenol (DON) downregulates gene expression of glucose transporters in the intestine of broiler chickens. Livest. Sci., 140: 72–79.10.1016/j.livsci.2011.02.014Search in Google Scholar

Awad W.A., Ghareeb K., Chimidtseren S., Strasser A., Hess M., Böh J. (2012 a). Chronic effects of deoxynivalenol on plasma cytokines and vaccine response of broiler chickens. In: Proceedings of the 34th Mykotoxin-Workshops der Ges. für Mykotoxin Forschung e.V., Braunschweig, Germany.Search in Google Scholar

Awad W.A., Ghareeb K., Dadak A., Gille L., Staniek K., Hess M., Böhm J. (2012 b). Genotoxic effects of deoxynivalenol in broiler chickens fed with low protein diets. Poultry Sci., 91: 550–555.10.3382/ps.2011-0174222334729Search in Google Scholar

Awad W.A., Ghareeb K., Böhm J., Zentek J. (2013). The toxicological impacts of the Fusarium mycotoxin, deoxynivalenol, in poultry flocks with special reference to immunotoxicity. Toxins, 5: 912–925.10.3390/toxins5050912Search in Google Scholar

Backhed F., Ley R.E., Sonnenburg J.L., Peterson D.A., Gordon J.I. (2005). Host-bacterial mutualism in the human intestine. Science, 307:1915–1920.10.1126/science.1104816Search in Google Scholar

Becker C., Reiter M., Pfaffl M.W., Meyer H.H.D., Bauer J., Meyer K.H.D. (2011). Expression of immune relevant genes in pigs under the influence of low doses of deoxynivalenol (DON). Mycotoxin Res., 27: 287–293.10.1007/s12550-011-0106-7Search in Google Scholar

Bjerrum L., Engberg R.M., Leser T.D., Jensen B.B., Finster K., Pedersen K. (2006). Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques. Poultry Sci., 85: 1151–1164.10.1093/ps/85.7.1151Search in Google Scholar

Bondy G.S., Pestka J.J. (1991). Dietary exposure to the trichothecene vomitoxin (deoxynivalenol) stimulates terminal differentiation of Peyer’s patch B cells to IgA secreting plasma cells. Toxicol. Appl. Pharmacol., 108: 520–530.10.1016/0041-008X(91)90098-YSearch in Google Scholar

Bondy G.S., Pestka J.J. (2000). Immunomodulation by fungal toxins. J. Toxicol. Environ. Health B, 3: 109–143.10.1080/109374000281113Search in Google Scholar

Bouhet S., Hourcade E., Loiseau N., Fikry A., Martinez S., Roselli M., Galtier P., Mengheri E., Oswald I.P. (2004). The mycotoxin fumonisin B1 alters the proliferation and the barrier function of porcine intestinal epithelial cells. Toxicol. Sci., 77: 165–171.Search in Google Scholar

Bouhet S., Oswald I.P. (2005). The effects of mycotoxins, fungal food contaminants, on the intestinal epithelial cell-derived innate immune response. Vet. Immunol. Immunopathol. 108, 199–209.10.1016/j.vetimm.2005.08.01016144716Search in Google Scholar

Chen P., Ji P., Li S.L. (2008). Effects of feeding extruded soybean, ground canola seed and whole cottonseed on ruminal fermentation, performance and milk fatty acid profile in early lactation dairy cows. Asian-Australas. J. Anim. Sci., 21: 204–213.10.5713/ajas.2008.70079Search in Google Scholar

Chen S.S., Li Y.H., Lin M.F. (2017). Chronic exposure to the Fusarium mycotoxin deoxynivalenol: impact on performance, immune organ, and intestinal integrity of slow-growing chickens. Toxins (Basel), 9: 334.10.3390/toxins9100334Search in Google Scholar

Chen W., Liu F., Ling Z., Tong X., Xiang C. (2012). Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS ONE 7: e39743.10.1371/journal.pone.0039743Search in Google Scholar

Cheng Y.H., Chang M.H., Lin Y.A., Wu J.F., Chen B.J. (2004). Effects of deoxynivalenol and degradation enzyme on growth performance and immune responses in mule ducks. J. Anim. Feed Sci., 13: 275–287.10.22358/jafs/67412/2004Search in Google Scholar

Claesson M.J., O’Toole P.W. (2010). Evaluating the latest high-throughput molecular techniques for the exploration of microbial gut communities. Gut Microbes., 1: 277–278.10.4161/gmic.1.4.12306Search in Google Scholar

Claesson M.J., Jeffery I.B., Conde S., Power S.E., O’Connor E.M., Cusack S. (2011). Gut microbiota composition correlates with diet and health in the elderly. Nature, 488: 178–18410.1038/nature1131922797518Search in Google Scholar

Cornick S., Tawiah A., Chadee K. (2015). Roles and regulation of the mucus barrier in the gut. Tissue Barriers 3: e982426.10.4161/21688370.2014.982426Search in Google Scholar

Cortinovis C., Pizzo F., Spicer L.J., Caloni F. (2013). Fusarium mycotoxins: effects on reproductive function in domestic animals – a review. Theriogenology, 80: 557–564.10.1016/j.theriogenology.2013.06.018Search in Google Scholar

Dänicke S., Ueberschär K.H., Matthes S., Halle I., Valenta H., Flachowsky G. (2002). Effect of addition of a detoxifying agent to laying hen diets containing uncontaminated or Fusarium toxin contaminated maize on performance of hens and on carryover of zearalenone. Poultry Sci., 81: 1671–1680.10.1093/ps/81.11.1671Search in Google Scholar

Dänicke S., Matthes S., Halle I., Ueberschar K.H., Döll S., Valenta H. (2003). Effects of graded levels of Fusarium toxin contaminated wheat and of a detoxifying agent in broiler diets on performance, nutrient digestibility and blood chemical parameters. Br. Poult. Sci., 44: 113–126.10.1080/0007166031000085300Search in Google Scholar

Dänicke S., Ueberschär K.H., Valenta H., Matthes S., Matthäus K., Halle I. (2004). Effects of graded levels of Fusarium-toxin-contaminated wheat in Pekin duck diets on performance, health and metabolism of deoxynivalenol and zearalenone. Br. Poult. Sci., 45: 264–272.10.1080/00071660410001715876Search in Google Scholar

Dänicke S., Goyarts T., Doll S., Grove N., Spolders M., Flachowsky G. (2006). Effects of the Fusarium toxin deoxynivalenol on tissue protein synthesis in pigs. Toxicol. Lett., 165: 297–311.10.1016/j.toxlet.2006.05.006Search in Google Scholar

Dänicke S., Valenta H., Ueberschär K.H., Matthes S. (2007). On the interactions between Fusarium toxin-contaminated wheat and non-starch-polysaccharide hydrolysing enzymes in turkey diets on performance, health and carry-over of deoxynivalenol and zearalenone. Br. Poult. Sci., 48: 39–48.10.1080/00071660601148161Search in Google Scholar

De La Cochetiere M.F., Durand T., Lepage P., Bourreille A., Galmiche J.P., Doré J. (2005). Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J. Clin. Microbiol., 43: 5588–5592.10.1128/JCM.43.11.5588-5592.2005Search in Google Scholar

Dersjant-Li Y., Verstegen M.W.A., Gerrits W.J.J. (2003). The impact of low concentrations of aflatoxin, deoxynivalenol or fumonisin in diets on growing pigs and poultry. Nutr. Res. Rev., 16: 223–239.Search in Google Scholar

Desjardins A.E. (2006). Mechanism of Action of Trichothecenes. In Fusarium Mycotoxins: Chemistry, Genetics and Biology; APS Press: St. Paul, MN, USA, pp. 53–54.Search in Google Scholar

Devegowda G., Murthy T.N.K. (2005). Mycotoxins: their effects in poultry and some practical solutions. In: The Mycotoxin Blue Book, Diaz D.E. (Ed.). Nottingham, United Kingdom, pp. 25–56.Search in Google Scholar

Dohrman A., Miyata S., Gallup M., Li J.D., Chapelin C., Coste A. (1998). Mucin gene (MUC 2 and MUC 5AC) upregulation by gram-positive and gram-negative bacteria. Biochim. Biophys. Acta, 1406: 251–259.10.1016/S0925-4439(98)00010-6Search in Google Scholar

Eriksen G.S., Pettersson H. (2004). Toxicological evaluation of trichothecenes in animal feed. Anim. Feed Sci. Technol., 114: 205–239.10.1016/j.anifeedsci.2003.08.008Search in Google Scholar

Escrivá L., Font G., Manyes L. (2015). In vivo toxicity studies of Fusarium mycotoxins in the last decade: a review. Food Chem. Toxicol., 78: 185–206.10.1016/j.fct.2015.02.005Search in Google Scholar

Feinberg B., Mclaughlin C.S. (1989). Biochemical Mechanism of Action of Trichothecene Mycotoxins. In: Beasley V.R. (Ed.), Trichothecene Mycotoxicosis: Pathophysiologic Effects, CRC Press: Boca Raton, FL, USA, I: 27–35.Search in Google Scholar

Gajęcka M., Tarasiuk M., Zielonka L., Dąbrowski M., Nicpoń J., Baranow-ski M., Gajęcki M.T. (2017). Changes in the metabolic profile and body weight of pre-pubertal gilts during prolonged monotonic exposure to low doses of zearalenone and deoxynivalenol. Toxicon, 125: 32–43.10.1016/j.toxicon.2016.11.007Search in Google Scholar

Ge Y., Ezzel R.M., Warren H.S. (2000). Localization of endotoxin in the rat intestinal epithelium. J. Infect. Dis., 182: 873–881.10.1086/315784Search in Google Scholar

Ghareeb K., Awad W.A., Böhm J. (2012). Ameliorative effect of a microbial feed additive on infectious bronchitis virus antibody titer and stress index in broiler chicks fed deoxynivalenol. Poultry Sci., 91: 800–807.10.3382/ps.2011-01741Search in Google Scholar

Ghareeb K., Awad W.A., Soodoi C., Sasgary S., Strasser A., Böhm J. (2013). Effects of feed contaminant deoxynivalenol on plasma cytokines and mRNA expression of immune genes in the intestine of broiler chickens. PLoS ONE 8: e71492.10.1371/journal.pone.0071492Search in Google Scholar

Ghareeb K., Awad W.A., Böhm J., Zebeli Q. (2015). Impacts of the feed contaminant deoxynivalenol on the intestine of monogastric animals: poultry and swine. J. Appl. Toxicol., 35: 327–337.10.1002/jat.3083Search in Google Scholar

Ghareeb K., Awad W.A., Böhm J., Zebeli Q. (2016 a). Impact of luminal and systemic endotoxin exposure on gut function, immune response and performance of chickens. World’s Poult. Sci. J., 72: 367–380.10.1017/S0043933916000180Search in Google Scholar

Ghareeb K., Awad W.A., Zebeli Q., Bohm J. (2016 b). Deoxynivalenol in chicken feed alters the vaccinal immune response and clinical biochemical serum parameters but not the intestinal and carcass characteristics. J. Anim. Physiol. Anim. Nutr., 100: 53–60.10.1111/jpn.1232825900321Search in Google Scholar

Girgis G.N., Shayan S., Barta J.R., Boermans H.J., Smith T.K. (2008). Immunomodulatory effects of feed-borne Fusarium mycotoxins in chickens infected with Coccidia. Exp. Biol. Med., 233: 1411–1420.10.3181/0805-RM-173Search in Google Scholar

Girgis G.N., Barta J.R., Brash M., Smith T.K. (2010). Morphological changes in the intestine of broiler breeder pullets fed diets naturally contaminated with Fusarium mycotoxins with or without coccidial challenge. Avian Dis., 54: 67–73.10.1637/8945-052809-Reg.1Search in Google Scholar

Gong A.D., Li H.P., Yuan Q.S., Song X.S., Yao W., He W.J., Zhang J.B., Liao Y.C. (2015). Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens s76-3 from wheat spikes against Fusarium graminearum. PLoS ONE, 10: e0116871.10.1371/journal.pone.0116871Search in Google Scholar

Goyarts T., Dänicke S. (2006). Bioavailability of the Fusarium toxin deoxynivalenol (DON) from naturally contaminated wheat for the pig. Toxicol. Lett., 163: 171–182.10.1016/j.toxlet.2005.10.007Search in Google Scholar

Gratz S.W., Duncan G., Richardson A.J. (2013). The human fecal microbiota metabolizes deoxynivalenol and deoxynivalenol-3-glucoside and may be responsible for urinary deepoxy-deoxynivalenol. Appl. Environ. Microbiol., 79: 1821–1825.10.1128/AEM.02987-12Search in Google Scholar

Gratz S.W., Dinesh R., Yoshinari T., Holtrop G., Richardson A.J., Duncan G. (2017). Masked trichothecene and zearalenone mycotoxins withstand digestion and absorption in the upper GI tract but are efficiently hydrolyzed by human gut microbiota in vitro. Mol. Nutr. Food Res., 61: 1600680.10.1002/mnfr.201600680Search in Google Scholar

Grenier B., Applegate T.J. (2013). Modulation of intestinal functions following mycotoxin ingestion: meta-analysis of published experiments in animals. Toxins, 5: 396–430.10.3390/toxins5020396Search in Google Scholar

Guarner F. (2006). Enteric Flora in Health and Disease. Digestion, 73 (suppl. 1): 5–12.10.1159/000089775Search in Google Scholar

Guarner F., Malagelada J.R. (2003).Gut flora in health and disease. Lancet., 361: 512–519.10.1016/S0140-6736(03)12489-0Search in Google Scholar

Islam Z., Pestka J.J. (2006). LPS priming potentiates and prolongs proinflammatory cytokine. response to the trichothecene deoxynivalenol in the mouse. Toxicol. Appl. Pharmacol., 211: 53–63.10.1016/j.taap.2005.04.031Search in Google Scholar

Islam Z., Nagase M., Ota A., Ueda S., Yoshizawa T., Sakato N. (1998). Structure-function relationship of T-2 toxin and its metabolites in inducing thymic apoptosis in vivo in mice. Biosci. Biotechnol. Biochem., 62: 1492–1497.10.1271/bbb.62.1492Search in Google Scholar

Ivanov I.I., Frutos R.de L., Manel N., Yoshinaga K., Rifkin D.B., Sartor R.B. (2008). Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe, 4: 337–349.10.1016/j.chom.2008.09.009Search in Google Scholar

Jia S.L., Liu X.C., Huang Z., Li Y., Zhang L.T., Luo Y.K. (2018). Effects of chitosan oligosac-charides on microbiota composition of silver carp (Hypophthalmichthys molitrix) determined by culture-dependent and independent methods during chilled storage. Int. J. Food Microbiol., 268: 81-91.10.1016/j.ijfoodmicro.2018.01.011Search in Google Scholar

Kanora A., Maes D. (2009). The role of mycotoxins in pig reproduction: a review. Vet. Med. (Praha) 54: 565–576.10.17221/156/2009-VETMEDSearch in Google Scholar

Klasing K.C. (2004) Interplay between diet microbes and immune defenses of the gastrointestinal tract. In: Physiological and Ecological Adaptations to Feeding in Vertebrates, Starck J.M., Wang T. (Eds). (Plymouth, Science Publishers).Search in Google Scholar

Klasing K.C., Leschinsky T.V. (1999). Functions, costs, and benefits of the immune system during development and growth. In: 22nd International Ornithological Congress, Adams N.J., Slotow R.H. (Eds). Durban, South Africa: BirdLife South Africa, pp. 2817–2835.Search in Google Scholar

Kogut M.H., Arsenault R.J. (2016). Editorial: gut health: the new paradigm in food animal prouction. Front. Vet. Sci., 3: 71.10.3389/fvets.2016.00071Search in Google Scholar

Kohl K.D., Dearing M.D. (2012). Experience matters: prior exposure to plant toxins enhances diversity of gut microbes in herbivores. Ecol Lett., 15: 1008–1015.10.1111/j.1461-0248.2012.01822.xSearch in Google Scholar

Kubena L.F., Swanson S.P., Harvey R.B., Fletcher O.J., Rowe L.D., Phillips T.D. (1985). Effects of feeding deoxynivalenol (vomitoxin)-contaminated wheat to growing chicks. Poultry Sci., 64: 1649–1655.10.3382/ps.0641649Search in Google Scholar

Kubena L.F., Edrington T.S., Harvey R.B., Phillips T.D., Sarr A.B., Rotting-haus G.E. (1997). Individual and combined effects of fumonisin B1 present in Fusarium monili-forme culture material and diacetoxyscirpenol or ochratoxin A in turkey poults. Poultry Sci., 76: 256–264.10.1093/ps/76.2.256Search in Google Scholar

Lee H.J., Ryu D. (2017). Worldwide Occurrence of Mycotoxins in Cereals and Cereal-Derived Food Products: Public Health Perspectives of Their Co-occurrence. J. Agric. Food Chem. 65: 7034–7051.10.1021/acs.jafc.6b04847Search in Google Scholar

Levy J. (2007). Secondary glomerular disease. Medicine, 35: 497–499.10.1016/j.mpmed.2007.06.008Search in Google Scholar

Ley R.E., Peterson D.A., Gordon J.I. (2006). Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell, 124: 837–848.10.1016/j.cell.2006.02.017Search in Google Scholar

Li Y., Wang Z., Beier R.C., Shen J., De Smet D., De Saeger S. (2011). T-2 toxin, a tricho-thecenemycotoxin: review of toxicity, metabolism, and analytical methods. J. Agric. Food Chem., 59: 3441–3453.10.1021/jf200767qSearch in Google Scholar

Li Y.D., Verstegen M.W.A., Gerrits W.J.J. (2003). The impact of low concentrations of aflatoxin, deoxynivalenol or fumonisin in diets on growing pigs and poultry. Nutr. Res. Rev., 16: 223–239.10.1079/NRR200368Search in Google Scholar

Li Z., Yang Z.B., Yang W.R., Wang S.J., Jiang S.Z., Wu Y.B. (2012). Effects of feed-borne Fusarium mycotoxins with or without yeast cell wall adsorbent on organ weight, serum biochemistry, and immunological parameters of broiler chickens. Poultry Sci., 91: 2487–2495.10.3382/ps.2012-02437Search in Google Scholar

Liew W.P.P., Mohd-Redzwan S. (2018). Mycotoxin: its impact on gut health and microbiota. Front. Cell. Infect. Mi., 8: 60.10.3389/fcimb.2018.00060Search in Google Scholar

Lucke A., Doupovec B., Paulsen P., Zebeli Q., Böhm J. (2017 a). Effects of low to moderate levels of deoxynivalenol on feed and water intake, weight gain, and slaughtering traits of broiler chickens. Mycotoxin Res., doi 10.1007/s12550-017-0284-z.10.1007/s12550-017-0284-z564469528687998Open DOISearch in Google Scholar

Lucke A., Metzler-Zebeli B.U., Zebeli Q., Böhm J. (2017 b). Effects of feeding graded levels of deoxynivalenol and oral administration of lipopolysaccharide on the cecal microbiota of broiler chickens. 111—21st European Society of Veterinary and Comparative Nutrition Congress; 20-23.09.2017, Cirencester, United Kingdom.Search in Google Scholar

Lun A.K., Moran E.T.Jr., Young L.G., Mc Millan E.G. (1989). Absorption and elimination of an oral dose of 3H-deoxynivalenol in colostomized and intact chickens. Bull. Environ. Contam. Toxicol., 42: 919–925.10.1007/BF01701636Search in Google Scholar

Lun A.K., Young L.G., Moran J.E.T., Hunter D.B., Rodriguez J.P. (1986). Effects of feeding hens a high level of vomitoxin-contaminated corn on performance and tissues residues. Poultry Sci., 65: 1095–1099.10.3382/ps.0651095Search in Google Scholar

Macpherson A.J., Harris N.L. (2004). Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol., 4: 478–485.10.1038/nri1373Search in Google Scholar

Maresca M., Mahfoud R., Garmy N., Fantini J. (2002). The mycotoxin deoxynivalenol affects nutrient absorption in human intestinal epithelial cells. J. Nutr., 132: 2723–2731.10.1093/jn/132.9.2723Search in Google Scholar

Maresca M., Fantini J. (2010). Some food-associated mycotoxins as potential risk factors in humans predisposed to chronic intestinal inflammatory diseases. Toxicon, 56: 282–294.10.1016/j.toxicon.2010.04.016Search in Google Scholar

Martins C. (2018). Assessment of multiple mycotoxins in breakfast cereals available in the Portuguese market. Food Chem., 239: 132–140.10.1016/j.foodchem.2017.06.088Search in Google Scholar

Maslowski K.M., Mackay C.R. (2011). Diet, gut microbiota and immune responses. Nat. Immunol., 12: 5–9.10.1038/ni0111-5Search in Google Scholar

Mc Cormick S.P., Stanley A.M., Stover N.A., Alexander N.J. (2011). Trichothecenes: from simple to complex mycotoxins. Toxins, 3: 802–814.10.3390/toxins3070802Search in Google Scholar

Mengheri E., Oswald I.P. (2004). The mycotoxin fumonisin B1 alters the proliferation and the barrier function of porcine intestinal epithelial cells. Toxicol. Sci., 77: 165–171.10.1093/toxsci/kfh006Search in Google Scholar

Noverr M.C., Huffnagle G.B. (2004). Does the microbiota regulate immune responses outside the gut? Trends Microbiol., 12: 562–568.10.1016/j.tim.2004.10.008Search in Google Scholar

Oakley B.B., Lillehoj H.S., Kogut M.H., Kim W.K., Maurer J.J., Pedroso A. (2014). The chicken gastrointestinal microbiome. FEMS Microbiol. Lett., 360: 100–112.10.1111/1574-6968.12608Search in Google Scholar

Osselaere A., Santos R., Hautekiet V., De Backer P., Chiers K., Ducatelle R. (2013). Deoxynivalenol impairs hepatic and intestinal gene expression of selected oxidative stress, tight junction and inflammation proteins in broiler chickens, but addition of an adsorbing agent shifts the effects to the distal parts of the small intestine. PLoS ONE, 8: e69014, doi 10.1371.10.1371/journal.pone.0069014Search in Google Scholar

Oswald I.P., Marin D.E., Bouhet S., Pinton P., Taranu I., Accensi F. (2005). Immuno-toxicological risk of mycotoxins for domestic animals. Food Add. Contam., 22: 354–360.10.1080/02652030500058320Search in Google Scholar

Pestka J.J. (2003). Deoxynivalenol-induced IgA production and IgA nephropathy-aberrant mucosal immune response with systemic repercussions. Toxicol. Lett., 140: 287–295.10.1016/S0378-4274(03)00024-9Search in Google Scholar

Pestka J.J. (2010). Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Arch. Toxicol., 84: 663–679.10.1007/s00204-010-0579-8Search in Google Scholar

Pestka J.J., Smolinski A.T. (2005). Deoxynivalenol: Toxicology and potential effects on humans. J. Toxicol. Environ. Health B, 8: 39–69.10.1080/10937400590889458Search in Google Scholar

Pestka J.J., Mormann M.A., Warner R.L. (1989). Dysregulation of IgA production and IgA nephropathy induced by the trichothecene vomitoxin. Food Chem. Toxicol., 27: 361–368.10.1016/0278-6915(89)90141-5Search in Google Scholar

Pestka J.J., Zhou H.R., Moon Y., Chung Y.J. (2004). Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: Unraveling a paradox. Toxicol. Lett., 153: 61–73.10.1016/j.toxlet.2004.04.023Search in Google Scholar

Pinton P., Oswald I.P. (2014). Effect of deoxynivalenol and other type B trichothecenes on the intestine: a review. Toxins, 6: 1615–1643.10.3390/toxins6051615Search in Google Scholar

Pinton P., Accensi F., Beauchamp E., Cossalter A.M., Callu P., Grosjean F., Os-wald I.P. (2008). Ingestion of deoxynivalenol (DON) contaminated feed alters the pig vaccinal immune responses. Toxicol. Lett., 177: 215–222.10.1016/j.toxlet.2008.01.015Search in Google Scholar

Pinton P., Braicu C., Nougayrede J.P., Laffitte J., Taranu I., Oswald I.P. (2010). Deoxynivalenol impairs porcine intestinal barrier function and decreases the protein expression of claudin-4 through a mitogen-activated protein kinase dependent mechanism. J. Nutr., 140: 1956–1962.10.3945/jn.110.123919Search in Google Scholar

Prelusky D.B., Hamilton R.M., Trenholm H.L., Miller J.D. (1986). Tissue distribution and excretion of radioactivity following administration of 14C-labeled deoxynivalenol to White Leghorn hens. Fundam. Appl. Toxicol., 7: 635–645.10.1093/toxsci/7.4.635Search in Google Scholar

Reddy K.E., Lee W., Young Jeong J., Lee Y., Lee H.J., Kim M.S. (2018). Effects of deoxynivalenol- and zearalenone-contaminated feed on the gene expression profiles in the kidneys of piglets. Asian-Australas. J. Anim. Sci., 31: 138–148.10.5713/ajas.17.0454Search in Google Scholar

Richard J.L. (2007). Some major mycotoxins and their mycotoxicoses – An overview. Int. J. Food Microb., 119: 3–10.10.1016/j.ijfoodmicro.2007.07.019Search in Google Scholar

Robert H., Payros D., Pinton P., Théodorou V., Mercier-Bonin M., Oswald I.P. (2017). Impact of mycotoxins on the intestine: are mucus and microbiota new targets? J. Toxicol. Environ. Health B, 20: 249–275.10.1080/10937404.2017.1326071Search in Google Scholar

Rocha O., Ansari K., Doohan F.M. (2005). Effects of trichothecene mycotoxins on eukaryotic cells: A review. Food Add. Contam., 22: 369–378.10.1080/02652030500058403Search in Google Scholar

Romer Labs’Guideto Mycotoxins(2000). Mycotoxins – An Overview. Richard J.L. (Ed.), Anytime Publishing Services: Leicestershire, UK, 1, pp. 1–48.Search in Google Scholar

Rotter B., Prelusky D.B., Pestka J.J. (1996). Toxicology of deoxynivalenol. J. Toxicol. Environ. Health, 48: 1–34.10.1080/009841096161447Search in Google Scholar

Round J.L., Mazmanian S.K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol., 9: 313–323.10.1038/nri2515Search in Google Scholar

Saadia R., Schein M., Macfarlane C., Boffard K.D. (1990). Gut barrier function and the surgeon. Br. J. Surg., 77: 487–492.10.1002/bjs.1800770505Search in Google Scholar

Schatzmayr G., Streit E. (2013). Global occurrence of mycotoxins in the food and feed chain: facts and figures. World Mycotoxin Journal, 6: 213–222.10.3920/WMJ2013.1572Search in Google Scholar

Sharmar R., Rooke J., Kolmogorova D., Melanson B., Mallet J.F., Matar C., Schwarz J., Ismail N. (2018). Sex differences in the peripheral and central immune responses following lipopolysaccharide treatment in pubertal and adult CD-1 mice. Int. J. Dev. Neurosci., 71: 94–104.10.1016/j.ijdevneu.2018.07.012Search in Google Scholar

Smirnova M.G., Guo L., Birchall J.P., Pearson J.P. (2003). LPS up-regulates mucin and cytokine mRNA expression and stimulates mucin and cytokine secretion in goblet cells. Cell. Immunol., 221: 42–49.10.1016/S0008-8749(03)00059-5Search in Google Scholar

Stuper-Szablewska K., Szablewski T., Buszko M., Perkowski J. (2016). Changes in contents of trichothecenes during commercial grain milling. LWT-Food Sci. Technol., 69: 55–58.10.1016/j.lwt.2016.01.036Search in Google Scholar

Summerell B.A., Leslie J.F. (2011). Fifty years of Fusarium: how could nine species have ever been enough? Fungal Divers., 50: 135–144.10.1007/s13225-011-0132-ySearch in Google Scholar

Suzuki T., Iwahashi Y. (2015). Low toxicity of deoxynivalenol-3-glucoside in microbial cells. Toxins (Basel), 7: 187–200.10.3390/toxins7010187Search in Google Scholar

Waśkiewicz A., Beszterda M., Kostecki M., Zielonka Ł., Goliński P., Gajęc-ki M. (2014). Deoxynivalenol in the gastrointestinal tract of immature gilts under per os toxin application. Toxins, 6: 973–987.10.3390/toxins6030973Search in Google Scholar

Wise M.G., Siragusa G.R. (2007). Quantitative analysis of the intestinal bacterial community in one to three week old commercially reared broiler chickens fed conventional or antibiotic free vegetable based diets. J. Appl. Microbiol., 102: 1138–1149.Search in Google Scholar

Wu Q.J., Zhou Y.M., Wu Y.N., Zhang L.L., Wang T. (2013). The effects of natural and modified clinoptilolite on intestinal barrier function and immune response to LPS in broiler chickens. Vet. Immunol. Immunopathol., 153: 70–76.10.1016/j.vetimm.2013.02.006Search in Google Scholar

Yunus A.W., Ghareeb K.K., Twaruzek M., Grajewski J., Böhm J. (2012). Deoxynivale- nol as a contaminant of broiler feed: Effects on bird performance and response to common vaccines. Poultry Sci., 91: 844–851.10.3382/ps.2011-01873Search in Google Scholar

Zhang Q., Eicher S.D., Ajuwon K.M., Applegate T.J. (2017). Development of a chicken ileal explant culture model for measurement of gut inflammation induced by lipopolysaccharide. Poultry Sci., 96: 3096–3103.10.3382/ps/pex160Search in Google Scholar

Zhu X.Y., Joerger R.D. (2003). Composition of microbiota in content and mucus from cecae of broiler chickens as measured by fluorescent in situ hybridization with group specific, 16S rRNA-targeted oligonucleotide probes. Poultry Sci., 82: 1242–1249.10.1093/ps/82.8.1242Search in Google Scholar

eISSN:
2300-8733
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine