This work is licensed under the Creative Commons Attribution 4.0 International License.
R.R. Andruszkiewicz and M. Woronowicz, On associative ring multiplication on abelian mixed groups, Comm. Algebra 42 (2014), no. 9, 3760–3767.AndruszkiewiczR.R.WoronowiczM.On associative ring multiplication on abelian mixed groupsComm. Algebra422014937603767Search in Google Scholar
R.R. Andruszkiewicz and M. Woronowicz, On SI-groups, Bull. Aust. Math. Soc. 91 (2015), no. 1, 92–103.AndruszkiewiczR.R.WoronowiczM.On SI-groupsBull. Aust. Math. Soc.912015192103Search in Google Scholar
R.R. Andruszkiewicz and M. Woronowicz, The classification of torsion-free TI-groups, Algebra Colloq. 29 (2022), no. 4, 595–606.AndruszkiewiczR.R.WoronowiczM.The classification of torsion-free TI-groupsAlgebra Colloq.2920224595606Search in Google Scholar
R.A. Beaumont, Rings with additive group is the direct sum of cyclic groups, Duke Math. J. 15 (1948), 367–369.BeaumontR.A.Rings with additive group is the direct sum of cyclic groupsDuke Math. J.151948367369Search in Google Scholar
S. Breaz and G. Călugăreanu, Additive groups of rings with identity. Avaliable at http://math.ubbcluj.ro/~calu/ident.pdf.BreazS.CălugăreanuG.Additive groups of rings with identityAvaliable at http://math.ubbcluj.ro/~calu/ident.pdf.Search in Google Scholar
S. Feigelstock, Additive Groups of Rings, Vol. I, Res. Notes in Math., 83, Pitman (Advanced Publishing Program), Boston, MA, 1983.FeigelstockS.Additive Groups of RingsVol. I, Res. Notes in Math., 83,Pitman (Advanced Publishing Program)Boston, MA1983Search in Google Scholar
S. Feigelstock, Additive Groups of Rings, Vol. II, Pitman Res. Notes Math. Ser., 169, Longman Scientific & Technical, London, 1988.FeigelstockS.Additive Groups of RingsVol. II, Pitman Res. Notes Math. Ser., 169,Longman Scientific & TechnicalLondon1988Search in Google Scholar
S. Feigelstock, Additive groups of rings whose subrings are ideals, Bull. Austral. Math. Soc. 55 (1997), no. 3, 477–481.FeigelstockS.Additive groups of rings whose subrings are idealsBull. Austral. Math. Soc.5519973477481Search in Google Scholar
L. Fuchs, Infinite Abelian Groups, Vol. I, Pure Appl. Math., Vol. 36, Academic Press, New York-London, 1970.FuchsL.Infinite Abelian GroupsVol. I, Pure Appl. Math., Vol. 36,Academic PressNew York-London1970Search in Google Scholar
L. Fuchs, Infinite Abelian Groups, Vol. II, Pure Appl. Math., Vol. 36-II, Academic Press, New York-London, 1973.FuchsL.Infinite Abelian GroupsVol. II, Pure Appl. Math., Vol. 36-II,Academic PressNew York-London1973Search in Google Scholar
F. Hasani, F. Karimi, A. Najafizadeh, and Y. Sadeghi, On the square subgroups of decomposable torsion-free abelian groups of rank three, Adv. Pure Appl. Math. 7 (2016), no. 4, 259–265.HasaniF.KarimiF.NajafizadehA.SadeghiY.On the square subgroups of decomposable torsion-free abelian groups of rank threeAdv. Pure Appl. Math.720164259265Search in Google Scholar
E.I. Kompantseva, Abelian dqt-groups and rings on them (in Russian), Fundam. Prikl. Mat. 18 (2013), no. 3, 53–67; translation in J. Math. Sci. (N.Y.) 206 (2015), no. 5, 494–504.KompantsevaE.I.Abelian dqt-groups and rings on them (in Russian)Fundam. Prikl. Mat.18201335367translation in J. Math. Sci. (N.Y.) 206 (2015), no. 5, 494–504.Search in Google Scholar
E.I. Kompantseva and T.Q.T. Nguyen, Algebraically compact abelian TI-groups (in Russian), Chebyshevskiĭ Sb. 20 (2019), no. 1, 204–213.KompantsevaE.I.NguyenT.Q.T.Algebraically compact abelian TI-groups (in Russian)Chebyshevskiĭ Sb.2020191204213Search in Google Scholar
P.T.T. Thuy, Torsion Abelian RAI-groups (in Russian), Fundam. Prikl. Mat. 17 (2012), no. 8, 109–138; translation in J. Math. Sci. (N.Y.) 197 (2014), no. 5, 658–678.ThuyP.T.T.Torsion Abelian RAI-groups (in Russian)Fundam. Prikl. Mat.1720128109138translation in J. Math. Sci. (N.Y.) 197 (2014), no. 5, 658–678.Search in Google Scholar
M. Woronowicz, A note on the square subgroups of decomposable torsion-free abelian groups of rank three, Ann. Math. Sil. 32 (2018), no. 1, 319–331.WoronowiczM.A note on the square subgroups of decomposable torsion-free abelian groups of rank threeAnn. Math. Sil.3220181319331Search in Google Scholar
M. Woronowicz, A note on Feigelstock's conjecture on the equivalence of the notions of nil and associative nil groups in the context of additive groups of rings of finite rank, Bull. Belg. Math. Soc. Simon Stevin 27 (2020), no. 4, 509–519.WoronowiczM.A note on Feigelstock's conjecture on the equivalence of the notions of nil and associative nil groups in the context of additive groups of rings of finite rankBull. Belg. Math. Soc. Simon Stevin2720204509519Search in Google Scholar