Uneingeschränkter Zugang

A Note on Abelian Groups Supporting Unital Rings

  
07. Juni 2024

Zitieren
COVER HERUNTERLADEN

R.R. Andruszkiewicz and M. Woronowicz, On associative ring multiplication on abelian mixed groups, Comm. Algebra 42 (2014), no. 9, 3760–3767. AndruszkiewiczR.R. WoronowiczM. On associative ring multiplication on abelian mixed groups Comm. Algebra 42 2014 9 3760 3767 Search in Google Scholar

R.R. Andruszkiewicz and M. Woronowicz, On SI-groups, Bull. Aust. Math. Soc. 91 (2015), no. 1, 92–103. AndruszkiewiczR.R. WoronowiczM. On SI-groups Bull. Aust. Math. Soc. 91 2015 1 92 103 Search in Google Scholar

R.R. Andruszkiewicz and M. Woronowicz, The classification of torsion-free TI-groups, Algebra Colloq. 29 (2022), no. 4, 595–606. AndruszkiewiczR.R. WoronowiczM. The classification of torsion-free TI-groups Algebra Colloq. 29 2022 4 595 606 Search in Google Scholar

R.A. Beaumont, Rings with additive group is the direct sum of cyclic groups, Duke Math. J. 15 (1948), 367–369. BeaumontR.A. Rings with additive group is the direct sum of cyclic groups Duke Math. J. 15 1948 367 369 Search in Google Scholar

S. Breaz and G. Călugăreanu, Additive groups of rings with identity. Avaliable at http://math.ubbcluj.ro/~calu/ident.pdf. BreazS. CălugăreanuG. Additive groups of rings with identity Avaliable at http://math.ubbcluj.ro/~calu/ident.pdf. Search in Google Scholar

S. Feigelstock, Additive Groups of Rings, Vol. I, Res. Notes in Math., 83, Pitman (Advanced Publishing Program), Boston, MA, 1983. FeigelstockS. Additive Groups of Rings Vol. I, Res. Notes in Math., 83, Pitman (Advanced Publishing Program) Boston, MA 1983 Search in Google Scholar

S. Feigelstock, Additive Groups of Rings, Vol. II, Pitman Res. Notes Math. Ser., 169, Longman Scientific & Technical, London, 1988. FeigelstockS. Additive Groups of Rings Vol. II, Pitman Res. Notes Math. Ser., 169, Longman Scientific & Technical London 1988 Search in Google Scholar

S. Feigelstock, Additive groups of rings whose subrings are ideals, Bull. Austral. Math. Soc. 55 (1997), no. 3, 477–481. FeigelstockS. Additive groups of rings whose subrings are ideals Bull. Austral. Math. Soc. 55 1997 3 477 481 Search in Google Scholar

L. Fuchs, Infinite Abelian Groups, Vol. I, Pure Appl. Math., Vol. 36, Academic Press, New York-London, 1970. FuchsL. Infinite Abelian Groups Vol. I, Pure Appl. Math., Vol. 36, Academic Press New York-London 1970 Search in Google Scholar

L. Fuchs, Infinite Abelian Groups, Vol. II, Pure Appl. Math., Vol. 36-II, Academic Press, New York-London, 1973. FuchsL. Infinite Abelian Groups Vol. II, Pure Appl. Math., Vol. 36-II, Academic Press New York-London 1973 Search in Google Scholar

F. Hasani, F. Karimi, A. Najafizadeh, and Y. Sadeghi, On the square subgroups of decomposable torsion-free abelian groups of rank three, Adv. Pure Appl. Math. 7 (2016), no. 4, 259–265. HasaniF. KarimiF. NajafizadehA. SadeghiY. On the square subgroups of decomposable torsion-free abelian groups of rank three Adv. Pure Appl. Math. 7 2016 4 259 265 Search in Google Scholar

E.I. Kompantseva, Abelian dqt-groups and rings on them (in Russian), Fundam. Prikl. Mat. 18 (2013), no. 3, 53–67; translation in J. Math. Sci. (N.Y.) 206 (2015), no. 5, 494–504. KompantsevaE.I. Abelian dqt-groups and rings on them (in Russian) Fundam. Prikl. Mat. 18 2013 3 53 67 translation in J. Math. Sci. (N.Y.) 206 (2015), no. 5, 494–504. Search in Google Scholar

E.I. Kompantseva and T.Q.T. Nguyen, Algebraically compact abelian TI-groups (in Russian), Chebyshevskiĭ Sb. 20 (2019), no. 1, 204–213. KompantsevaE.I. NguyenT.Q.T. Algebraically compact abelian TI-groups (in Russian) Chebyshevskiĭ Sb. 20 2019 1 204 213 Search in Google Scholar

P.T.T. Thuy, Torsion Abelian RAI-groups (in Russian), Fundam. Prikl. Mat. 17 (2012), no. 8, 109–138; translation in J. Math. Sci. (N.Y.) 197 (2014), no. 5, 658–678. ThuyP.T.T. Torsion Abelian RAI-groups (in Russian) Fundam. Prikl. Mat. 17 2012 8 109 138 translation in J. Math. Sci. (N.Y.) 197 (2014), no. 5, 658–678. Search in Google Scholar

M. Woronowicz, A note on the square subgroups of decomposable torsion-free abelian groups of rank three, Ann. Math. Sil. 32 (2018), no. 1, 319–331. WoronowiczM. A note on the square subgroups of decomposable torsion-free abelian groups of rank three Ann. Math. Sil. 32 2018 1 319 331 Search in Google Scholar

M. Woronowicz, A note on Feigelstock's conjecture on the equivalence of the notions of nil and associative nil groups in the context of additive groups of rings of finite rank, Bull. Belg. Math. Soc. Simon Stevin 27 (2020), no. 4, 509–519. WoronowiczM. A note on Feigelstock's conjecture on the equivalence of the notions of nil and associative nil groups in the context of additive groups of rings of finite rank Bull. Belg. Math. Soc. Simon Stevin 27 2020 4 509 519 Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Mathematik, Mathematik, Allgemeines