Accesso libero

Fibonacci Sums Modulo 5

,  e   
07 giu 2024
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

K. Adegoke, Weighted sums of some second-order sequences, Fibonacci Quart. 56 (2018), no. 3, 252–262. AdegokeK. Weighted sums of some second-order sequences Fibonacci Quart. 56 2018 3 252 262 Search in Google Scholar

K. Adegoke, R. Frontczak, and T. Goy, New binomial Fibonacci sums, Palest. J. Math. 13 (2024), no. 1, 323–339. AdegokeK. FrontczakR. GoyT. New binomial Fibonacci sums Palest. J. Math. 13 2024 1 323 339 Search in Google Scholar

K. Adegoke, R. Frontczak, and T. Goy, Binomial Fibonacci sums from Chebyshev polynomials, J. Integer Seq. 26 (2023), no. 9, Paper No. 23.9.6, 26 pp. AdegokeK. FrontczakR. GoyT. Binomial Fibonacci sums from Chebyshev polynomials J. Integer Seq. 26 2023 9 Paper No. 23.9.6, 26 pp. Search in Google Scholar

K. Adegoke, R. Frontczak, and T. Goy, On Fibonacci and Lucas binomial sums modulo 5, in: XIX International Scientific Mykhailo Kravchuk Conference. Abstracts, I. Sikorsky Kyiv Polytechnic Institute, Kyiv, 2023, pp. 60–61. AdegokeK. FrontczakR. GoyT. On Fibonacci and Lucas binomial sums modulo 5 in: XIX International Scientific Mykhailo Kravchuk Conference. Abstracts I. Sikorsky Kyiv Polytechnic Institute, Kyiv 2023 60 61 Search in Google Scholar

K. Adegoke, A. Olatinwo, and S. Ghosh, Cubic binomial Fibonacci sums, Electron. J. Math. 2 (2021), 44–51. AdegokeK. OlatinwoA. GhoshS. Cubic binomial Fibonacci sums Electron. J. Math. 2 2021 44 51 Search in Google Scholar

M. Bai, W. Chu, and D. Guo, Reciprocal formulae among Pell and Lucas polynomials, Mathematics 10 (2022), no. 15, 2691, 11 pp. BaiM. ChuW. GuoD. Reciprocal formulae among Pell and Lucas polynomials Mathematics 10 2022 15 2691 11 pp. Search in Google Scholar

Z. Fan and W. Chu, Convolutions involving Chebyshev polynomials, Electron. J. Math. 3 (2022), 38–46. FanZ. ChuW. Convolutions involving Chebyshev polynomials Electron. J. Math. 3 2022 38 46 Search in Google Scholar

R. Frontczak and T. Goy, Chebyshev-Fibonacci polynomial relations using generating functions, Integers 21 (2021), Paper No. A100, 15 pp. FrontczakR. GoyT. Chebyshev-Fibonacci polynomial relations using generating functions Integers 21 2021 Paper No. A100, 15 pp. Search in Google Scholar

I. Gradshteyn and I. Ryzhik, Table of Integrals, Series, and Products, Elsevier/Academic Press, Amsterdam, 2015. GradshteynI. RyzhikI. Table of Integrals, Series, and Products Elsevier/Academic Press Amsterdam 2015 Search in Google Scholar

E. Hansen, Addendum for ‘A Table of Series and Products’, preprint (undated), 56 pp. Available at carmamaths.org/resources/jon/Preprints/Books/Other/hansen07.pdf. HansenE. Addendum for ‘A Table of Series and Products’ preprint (undated), 56 pp. Available at carmamaths.org/resources/jon/Preprints/Books/Other/hansen07.pdf. Search in Google Scholar

E. Kılıç, S. Koparal, and N. Ömür, Powers sums of the first and second kinds of Chebyshev polynomials, Iran. J. Sci. Technol. Trans. A Sci. 44 (2020), no. 2, 425–435. KılıçE. KoparalS. ÖmürN. Powers sums of the first and second kinds of Chebyshev polynomials Iran. J. Sci. Technol. Trans. A Sci. 44 2020 2 425 435 Search in Google Scholar

T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, New York, 2001. KoshyT. Fibonacci and Lucas Numbers with Applications Wiley-Interscience New York 2001 Search in Google Scholar

D.J. Leeming, The coefficients of sinh xt/sin t and the Bernoulli polynomials, Internat. J. Math. Ed. Sci. Tech. 28 (1997), no. 4, 575–579. LeemingD.J. The coefficients of sinh xt/sin t and the Bernoulli polynomials Internat. J. Math. Ed. Sci. Tech. 28 1997 4 575 579 Search in Google Scholar

C. Li and Z. Wenpeng, Chebyshev polynomials and their some interesting applications, Adv. Difference Equ. (2017), Paper No. 303, 9 pp. LiC. WenpengZ. Chebyshev polynomials and their some interesting applications Adv. Difference Equ. 2017 Paper No. 303, 9 pp. Search in Google Scholar

Y. Li, On Chebyshev polynomials, Fibonacci polynomials, and their derivatives, J. Appl. Math. (2014), Art. ID 451953, 8 pp. LiY. On Chebyshev polynomials, Fibonacci polynomials, and their derivatives J. Appl. Math. 2014 Art. ID 451953, 8 pp. Search in Google Scholar

J.C. Mason and D.C. Handscomb, Chebyshev Polynomials, Chapman & Hall/CRC, Boca Raton, FL, 2003. MasonJ.C. HandscombD.C. Chebyshev Polynomials Chapman & Hall/CRC Boca Raton, FL 2003 Search in Google Scholar

N.J.A. Sloane (ed.), The On-Line Encyclopedia of Integer Sequences. Available at oeis.org/book.html. SloaneN.J.A. (ed.) The On-Line Encyclopedia of Integer Sequences Available at oeis.org/book.html. Search in Google Scholar

S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section. Theory and Applications, Dover Publications, Inc., Mineola, NY, 2008. VajdaS. Fibonacci and Lucas Numbers, and the Golden Section. Theory and Applications Dover Publications, Inc. Mineola, NY 2008 Search in Google Scholar

W. Zhang, On Chebyshev polynomials and Fibonacci numbers, Fibonacci Quart. 40 (2002), no. 5, 424–428. ZhangW. On Chebyshev polynomials and Fibonacci numbers Fibonacci Quart. 40 2002 5 424 428 Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Matematica, Matematica generale