2. Fibonacci sums modulo 5 from the sin nx and cos nx expansions
We begin with a known lemma [9 , 1.331(3) and 1.331(1)].
Lemma 2.1.
If n is a positive integer, then
(2.1)
∑ k = 1 n / 2 ( − 1 ) k − 1 n k n − k − 1 k − 1 2 n − 2 k − 1 cos n − 2 k x = 2 n − 1 cos n x − cos nx ,
\sum\limits_{k = 1}^{\left\lfloor {n/2} \right\rfloor } {{{{{( - 1)}^{k - 1}}n} \over k}\left( {\matrix{ {n - k - 1} \cr {k - 1} \cr } } \right){2^{n - 2k - 1}}{{\cos }^{n - 2k}}x = {2^{n - 1}}\;{{\cos }^n}\;x - \cos \;nx} ,
(2.2)
∑ k = 0 n − 1 / 2 ( − 1 ) k n − k − 1 k 2 n − 2 k − 1 cos n − 2 k − 1 x = sin nx sin x .
\sum\limits_{k = 0}^{\left\lfloor {\left( {n - 1} \right)/2} \right\rfloor } {{{( - 1)}^k}\left( {\matrix{ {n - k - 1} \cr k \cr } } \right){2^{n - 2k - 1}}{{\cos }^{n - 2k - 1}}x = {{\sin nx} \over {\sin x}}.}
Lemma 2.2.
If n is an integer, then
(2.3)
cos n π 5 = ( − 1 ) n , if n ≡ 0 mod 5 , ( − 1 ) n − 1 α / 2 , if n ≡ 1 or 4 mod 5 , ( − 1 ) n − 1 β / 2 , if n ≡ 2 or 3 mod 5 ,
\cos \left( {{{n\pi } \over 5}} \right) = \left\{ {\matrix{ {{{( - 1)}^n},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{n - 1}}\alpha /2,} \hfill & {if\;n \equiv 1\;\;or\;\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{n - 1}}\beta /2,} \hfill & {if\;n \equiv 2\;\;or\;\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.
(2.4)
cos 2 n π 5 = 1 , if n ≡ 0 mod 5 , − β / 2 , if n ≡ 1 or 4 mod 5 , − α / 2 , if n ≡ 2 or 3 mod 5 .
\cos \left( {{{2n\pi } \over 5}} \right) = \left\{ {\matrix{ {1,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - \beta /2,} \hfill & {if\;n \equiv 1\;\;or\;\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - \alpha /2,} \hfill & {if\;n \equiv 2\;\;or\;\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.
Proof
Relations stated in (2.3 ) can be proved easily by elementary methods. For instance, they follow by applying the addition theorem for the cosine function
cos a + b = cos a cos b − sin a sin b
\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b
combined with the special values
cos π 5 = α 2 , cos 2 π 5 = − β 2 , cos 3 π 5 = β 2 , cos 4 π 5 = − α 2 .
\matrix{ {\cos \left( {{\pi \over 5}} \right) = {\alpha \over 2},} & {\cos \left( {{{2\pi } \over 5}} \right) = - {\beta \over 2},} & {\cos \left( {{{3\pi } \over 5}} \right) = {\beta \over 2},} & {\cos \left( {{{4\pi } \over 5}} \right) = - {\alpha \over 2}} \cr } .
Relations stated in (2.4 ) follow directly from (2.3 ).
In our first main results we state Lucas (Fibonacci) identities involving binomial coefficient and additional parameter.
Theorem 2.3.
If n is a positive integer and t is any integer, then
n ∑ k = 1 n / 2 ( − 1 ) k − 1 k n − k − 1 k − 1 L n − 2 k + t = L n + t − ( − 1 ) n 2 L t , if n ≡ 0 mod 5 , L n + t + ( − 1 ) n L t + 1 , if n ≡ 1 or 4 mod 5 , L n + t − ( − 1 ) n L t − 1 , if n ≡ 2 or 3 mod 5 , n ∑ k = 1 n / 2 ( − 1 ) k − 1 k n − k − 1 k − 1 F n − 2 k + t = F n + t − ( − 1 ) n 2 F t , if n ≡ 0 mod 5 , F n + t + ( − 1 ) n F t + 1 , if n ≡ 1 or 4 mod 5 , F n + t − ( − 1 ) n F t − 1 , if n ≡ 2 or 3 mod 5 .
\matrix{ {n\sum\limits_{k = 1}^{\left\lfloor {n/2} \right\rfloor } {{{{{( - 1)}^{k - 1}}} \over k}\left( {\matrix{ {n - k - 1} \cr {k - 1} \cr } } \right){L_{n - 2k + t}}} = \left\{ {\matrix{ {{L_{n + t}} - {{( - 1)}^n}2{L_t},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{n + t}} + {{( - 1)}^n}{L_{t + 1}},} \hfill & {if\;n \equiv 1\;\;or\;\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{n + t}} - {{( - 1)}^n}{L_{t - 1}},} \hfill & {if\;n \equiv 2\;\;or\;\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {n\sum\limits_{k = 1}^{\left\lfloor {n/2} \right\rfloor } {{{{{( - 1)}^{k - 1}}} \over k}\left( {\matrix{ {n - k - 1} \cr {k - 1} \cr } } \right){F_{n - 2k + t}}} = \left\{ {\matrix{ {{F_{n + t}} - {{( - 1)}^n}2{F_t},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_{n + t}} + {{( - 1)}^n}{F_{t + 1}},} \hfill & {if\;n \equiv 1\;\;or\;\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_{n + t}} - {{( - 1)}^n}{F_{t - 1}},} \hfill & {if\;n \equiv 2\;\;or\;\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }
Proof
Set x = π /5 in (2.1 ) and use (2.3 ) and the fact that
(2.5)
2 α r = L r + F r 5 , 2 β r = L r − F r 5
\matrix{ {2{\alpha ^r} = {L_r} + {F_r}\sqrt 5 ,} \hfill & {2{\beta ^r} = {L_r} - {F_r}\sqrt 5 } \hfill \cr }
for any integer r .
We proceed with some corollaries.
Corollary 2.4.
If n is a positive integer, then
n ∑ k = 1 n / 2 ( − 1 ) k − 1 k n − k − 1 k − 1 F 2 k = − 2 F n , if n ≡ 0 mod 5 , − F n − 1 , if n ≡ 1 or 4 mod 5 , F n + 1 , if n ≡ 2 or 3 mod 5 , n ∑ k = 1 n / 2 ( − 1 ) k − 1 k n − k − 1 k − 1 F n − 2 k + δ = F n + δ ,
\matrix{ {n\sum\limits_{k = 1}^{\left\lfloor {n/2} \right\rfloor } {{{{{( - 1)}^{k - 1}}} \over k}\left( {\matrix{ {n - k - 1} \cr {k - 1} \cr } } \right){F_{2k}}} = \left\{ {\matrix{ { - 2{F_n},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {F_{n - 1}},} \hfill & {if\;n \equiv 1\;\;or\;\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_{n + 1}},} \hfill & {if\;n \equiv 2\;\;or\;\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {n\sum\limits_{k = 1}^{\left\lfloor {n/2} \right\rfloor } {{{{{( - 1)}^{k - 1}}} \over k}\left( {\matrix{ {n - k - 1} \cr {k - 1} \cr } } \right){F_{n - 2k + \delta }} = {F_{n + \delta }},} } \hfill \cr }
where
δ = 0 , if n ≡ 0 mod 5 , − 1 , if n ≡ 1 or 4 mod 5 , 1 , if n ≡ 2 or 3 mod 5 .
\delta = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - 1,} \hfill & {if\;n \equiv 1\;\;or\;\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {if\;n \equiv 2\;\;or\;\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.
Corollary 2.5.
If n is a positive integer, then
n ∑ k = 1 n / 2 ( − 1 ) k − 1 k n − k − 1 k − 1 L n − 2 k + 1 = L n − 1 − ( − 1 ) n 3 , if n ≡ 2 or 3 mod 5 , L n − 1 + ( − 1 ) n 2 , otherwise , n ∑ k = 1 n / 2 ( − 1 ) k − 1 k n − k − 1 k − 1 L n − 2 k + 1 = L n + 1 + ( − 1 ) n 3 , if n ≡ 1 or 4 mod 5 , L n + 1 − ( − 1 ) n 2 , otherwise , n ∑ k = 1 n / 2 ( − 1 ) k − 1 k n − k − 1 k − 1 L n − 2 k = L n − ( − 1 ) n 4 , if n ≡ 0 mod 5 , L n + ( − 1 ) n , otherwise .
\matrix{ {n\sum\limits_{k = 1}^{\left\lfloor {n/2} \right\rfloor } {{{{{( - 1)}^{k - 1}}} \over k}\left( {\matrix{ {n - k - 1} \cr {k - 1} \cr } } \right){L_{n - 2k + 1}}} = \left\{ {\matrix{ {{L_{n - 1}} - {{( - 1)}^n}3,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{n - 1}} + {{( - 1)}^n}2,} \hfill & {otherwise,} \hfill \cr } } \right.} \hfill \cr {n\sum\limits_{k = 1}^{\left\lfloor {n/2} \right\rfloor } {{{{{( - 1)}^{k - 1}}} \over k}\left( {\matrix{ {n - k - 1} \cr {k - 1} \cr } } \right){L_{n - 2k + 1}}} = \left\{ {\matrix{ {{L_{n + 1}} + {{( - 1)}^n}3,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{n + 1}} - {{( - 1)}^n}2,} \hfill & {otherwise,} \hfill \cr } } \right.} \hfill \cr {n\sum\limits_{k = 1}^{\left\lfloor {n/2} \right\rfloor } {{{{{( - 1)}^{k - 1}}} \over k}\left( {\matrix{ {n - k - 1} \cr {k - 1} \cr } } \right){L_{n - 2k}}} = \left\{ {\matrix{ {{L_n} - {{( - 1)}^n}4,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_n} + {{( - 1)}^n},} \hfill & {otherwise.} \hfill \cr } } \right.} \hfill \cr }
Lemma 2.6.
If n is an integer, then
(2.6)
sin n π / 5 sin π / 5 = 0 , if n ≡ 0 mod 5 , ( − 1 ) n / 5 , if n ≡ 1 or 4 mod 5 , ( − 1 ) n / 5 α , if n ≡ 2 or 3 mod 5 ,
{{\sin \left( {n\pi /5} \right)} \over {\sin \left( {\pi /5} \right)}} = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{\left\lfloor {n/5} \right\rfloor }},} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{{\left\lfloor {n/5} \right\rfloor }}}\alpha ,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.
(2.7)
sin 3 n π / 5 sin 3 π / 5 = 0 , if n ≡ 0 mod 5 , ( − 1 ) n / 5 , if n ≡ 1 or 4 mod 5 , ( − 1 ) n / 5 β , if n ≡ 2 or 3 mod 5 .
{{\sin \left( {3n\pi /5} \right)} \over {\sin \left( {3\pi /5} \right)}} = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{\left\lfloor {n/5} \right\rfloor }},} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{\left\lfloor {n/5} \right\rfloor }}\beta ,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.
From Lemma 2.6 we can deduce the following Lucas and Fibonacci binomial identities modulo 5.
Theorem 2.7.
If n is a positive integer and t is any integer, then
(2.8)
∑ k = 0 n / 2 ( − 1 ) k n − k k L n − 2 k + t = ( − 1 ) n + 1 / 5 L t , if n ≡ 0 or 3 mod 5 , ( − 1 ) n + 1 / 5 L t + 1 , if n ≡ 1 or 2 mod 5 , 0 , if n ≡ 4 mod 5 ,
\sum\limits_{k = 0}^{^{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^k}\left( {\matrix{{n - k} \cr k \cr } } \right){L_{n - 2k + t}}} = \left\{ {\matrix{{{{( - 1)}^{\left\lfloor {\left( {n + 1} \right)/5} \right\rfloor }}{L_t},} \hfill & {if\;n \equiv 0\;or\;3\;\;\;\;\left( {{\rm mod} \;5} \right),} \hfill \cr {{{( - 1)}^{\left\lfloor {\left( {n + 1} \right)/5} \right\rfloor }}{L_{t + 1}},} \hfill & {if\;n \equiv 1\;or\;2\;\;\;\;\left( {{\rm mod} \;5} \right),} \hfill \cr {0,} \hfill & {if\;n \equiv 4\;\;\;\;\left( {{\rm mod} \;5} \right),} \hfill \cr } } \right.
(2.9)
∑ k = 0 n / 2 ( − 1 ) k n − k k F n − 2 k + t = ( − 1 ) n + 1 / 5 F t , if n ≡ 0 or 3 mod 5 , ( − 1 ) n / 5 F t + 1 , if n ≡ 1 or 2 mod 5 , 0 , if n ≡ 4 mod 5 .
\sum\limits_{k = 0}^{^{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^k}\left( {\matrix{{n - k} \cr k \cr } } \right){F_{n - 2k + t}}} = \left\{ {\matrix{{{{( - 1)}^{\left\lfloor {\left( {n + 1} \right)/5} \right\rfloor }}{F_t},} \hfill & {if\;n \equiv 0\;or\;3\;\;\;\;\left( {{\rm mod} \;5} \right),} \hfill \cr {{{( - 1)}^{\left\lfloor {n/5} \right\rfloor }}{F_{t + 1}},} \hfill & {if\;n \equiv 1\;or\;2\;\;\;\;\left( {{\rm mod} \;5} \right),} \hfill \cr {0,} \hfill & {if\;n \equiv 4\;\;\;\;\left( {{\rm mod} \;5} \right).} \hfill \cr } } \right.
Proof
Set x = π /5 in (2.2 ), use (2.6 ), (2.5 ) and simplify.
A variant of the Lucas and Fibonacci sums with even subscripts is stated as the next corollary.
Corollary 2.8.
If n is a positive integer, then
∑ k = 0 n / 2 ( − 1 ) n − k n − k k L 2 k = ( − 1 ) n + 1 / 5 L n , if n ≡ 0 or 3 mod 5 , ( − 1 ) n + 1 / 5 + 1 L n − 1 , if n ≡ 1 or 2 mod 5 , 0 , if n ≡ 4 mod 5 , ∑ k = 0 n / 2 ( − 1 ) n − k n − k k F 2 k = ( − 1 ) n + 1 / 5 F n , if n ≡ 0 or 3 mod 5 , ( − 1 ) n + 1 / 5 + 1 F n − 1 , if n ≡ 1 or 2 mod 5 , 0 , if n ≡ 4 mod 5 .
\matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){L_{2k}} = } \left\{ {\matrix{ {{{( - 1)}^{{\left\lfloor {\left( {n + 1} \right)/5} \right\rfloor }}}{L_n},} \hfill & {if\;n \equiv 0\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{{\left\lfloor {\left( {n + 1} \right)/5} \right\rfloor + 1}}}{L_{n - 1}},} \hfill & {if\;n \equiv 1\;or\;2\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {0,} \hfill & {if\;n \equiv 4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){F_{2k}} = } \left\{ {\matrix{ {{{( - 1)}^{{\left\lfloor {\left( {n + 1} \right)/5} \right\rfloor }}}{F_n},} \hfill & {if\;n \equiv 0\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{{\left\lfloor {\left( {n + 1} \right)/5} \right\rfloor + 1}}}{F_{n - 1}},} \hfill & {if\;n \equiv 1\;or\;2\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {0,} \hfill & {if\;n \equiv 4\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }
Corollary 2.9.
If n is a positive integer, then
∑ k = 0 n / 2 ( − 1 ) k n − k k F n − 2 k + 1 = 0 , if n ≡ 4 mod 5 , ( − 1 ) n + 1 / 5 , otherwise , ∑ k = 0 n / 2 ( − 1 ) k n − k k F n − 2 k − δ = 0 ,
\matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^k}\left( {\matrix{ {n - k} \cr k \cr } } \right){F_{n - 2k + 1}}} = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{{\left\lfloor {\left( {n + 1} \right)/5} \right\rfloor }}},} \hfill & {otherwise,} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^k}\left( {\matrix{ {n - k} \cr k \cr } } \right){F_{n - 2k - \delta }}} = 0,} \hfill \cr }
where
δ = 0 , if n ≡ 0 or 3 mod 5 , 1 , if n ≡ 1 or 2 mod 5 .
\delta = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;or\;3} \hfill & {\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {\;if\;n \equiv 1\;or\;2} \hfill & {\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.
3. Fibonacci sums modulo 5 from Waring formulas
This section is based on utilizing the following trigonometric identities with the use of Waring formulas.
Lemma 3.1.
(3.1)
∑ k = 0 n / 2 ( − 1 ) k n n − k n − k k 2 n − 2 k − 1 cos n − 2 k x = cos nx ,
\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^k}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){2^{n - 2k - 1}}{{\cos }^{n - 2k}}x} = \cos nx,
(3.2)
∑ k = 0 n − 1 / 2 ( − 1 ) n − 1 / 2 − k n n − k n − k k 2 n − 2 k − 1 sin n − 2 k x = sin nx , n odd ,
\sum\limits_{k = 0}^{{\left( {n - 1} \right)/2}} {{{( - 1)}^{\left( {n - 1} \right)/2 - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){2^{n - 2k - 1}}{{\sin }^{n - 2k}}} x = \sin nx,\;\;\;n\;odd,
(3.3)
∑ k = 0 n / 2 ( − 1 ) n / 2 − k n n − k n − k k 2 n − 2 k − 1 sin n − 2 k x = cos nx , n even .
\sum\limits_{k = 0}^{{n/2}} {{{( - 1)}^{n/2 - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){2^{n - 2k - 1}}{\rm{si}}{{\rm{n}}^{n - 2k}}x = {{\cos}}\,nx,} \;\;\;n\;even.
Proof
Consider the Waring formula
∑ k = 0 n / 2 ( − 1 ) k n n − k n − k k ( x 1 + x 2 ) n − 2 k ( x 1 x 2 ) k = x 1 n + x 2 n .
\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^k}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){{({x_1} + {x_2})}^{n - 2k}}{{({x_1}{x_2})}^k} = x_1^n + x_2^n} .
Let i be the imaginary unit. The choice x 1 = eix /2, x 2 = e−ix /2 produces (3.1 ), while the choice x 1 = eix /(2i ), x 2 = −e−ix /(2i ) gives x 1 + x 2 = sin x , x 1 x 2 = 1/4, and
x 1 n + x 2 n = ( − 1 ) n − 1 / 2 2 1 − n sin nx , if n is odd , ( − 1 ) n / 2 2 1 − n cos nx , if n is even ,
x_1^n + x_2^n = \left\{ {\matrix{ {{{( - 1)}^{\left( {n - 1} \right)/2}}{2^{1 - n}}\;\sin nx,} \hfill & {{\rm{if}}\;n\;{\rm{is}}\;{\rm{odd}},} \hfill \cr {{{( - 1)}^{n/2}}{2^{1 - n}}\cos nx,} \hfill & {{\rm{if}}\;n\;{\rm{is}}\;{\rm{even}},} \hfill \cr } } \right.
and hence (3.2 ) and (3.3 ).
Lemma 3.2.
If n is a positive integer, then
(3.4)
∑ k = 0 n / 2 ( − 1 ) k n − k k 2 n − 2 k cos n − 2 k x = sin n + 1 x sin x , ∑ k = 0 n − 1 / 2 ( − 1 ) n − 1 / 2 − k n − k k 2 n − 2 k sin n − 2 k x = sin n + 1 x cos x , n odd , ∑ k = 0 n / 2 ( − 1 ) n / 2 − k n − k k 2 n − 2 k sin n − 2 k x = cos n + 1 x cos x , n even .
\matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^k}\left( {\matrix{ {n - k} \cr k \cr } } \right){2^{n - 2k}}{{\cos }^{n - 2k}}x} = {{\sin \left( {\left( {n + 1} \right)x} \right)} \over {\sin x}},} \hfill \cr {\sum\limits_{k = 0}^{{\left( {n - 1} \right)/2}} {{{( - 1)}^{\left( {n - 1} \right)/2 - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){2^{n - 2k}}{{\sin }^{n - 2k}}x} = {{\sin \left( {\left( {n + 1} \right)x} \right)} \over {\cos x}},\;\;\;n\;odd,} \hfill \cr {\sum\limits_{k = 0}^{{n/2}} {{{( - 1)}^{n/2 - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){2^{n - 2k}}{{\sin }^{n - 2k}}x} = {{\cos \left( {\left( {n + 1} \right)x} \right)} \over {\cos x}},\;\;\;n\;even.} \hfill \cr }
Proof
Similar to the proof of Lemma 3.1 . We use the dual to the Waring formula
∑ k = 0 n / 2 ( − 1 ) k n − k k ( x 1 + x 2 ) n − 2 k ( x 1 x 2 ) k = x 1 n + 1 − x 2 n + 1 x 1 − x 2 .
\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^k}\left( {\matrix{ {n - k} \cr k \cr } } \right){{({x_1} + {x_2})}^{n - 2k}}{{({x_1}{x_2})}^k}} = {{x_1^{n + 1} - x_2^{n + 1}} \over {{x_1} - {x_2}}}.
Theorem 3.3.
If n is a positive integer and t is any integer, then
∑ k = 0 n / 2 ( − 1 ) n − k n n − k n − k k F n − 2 k + t = 2 F t , if n ≡ 0 mod 5 , − F t + 1 , if n ≡ 1 or 4 mod 5 , F t − 1 , if n ≡ 2 or 3 mod 5 , ∑ k = 0 n / 2 ( − 1 ) n − k n n − k n − k k L n − 2 k + t = 2 L t , if n ≡ 0 mod 5 , − L t + 1 , if n ≡ 1 or 4 mod 5 , L t − 1 , if n ≡ 2 or 3 mod 5 .
\matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){F_{n - 2k + t}}} = \left\{ {\matrix{ {2{F_t},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {F_{t + 1}},} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_{t - 1}},} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){L_{n - 2k + t}}} = \left\{ {\matrix{ {2{L_t},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {L_{t + 1}},} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{t - 1}},} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }
Proof
We apply equation (3.1 ). Inserting x = π /5 and x = 3π /5, respectively, and keeping in mind the trigonometric identity cos 3x = 4 cos3 x −3 cos x we end with
∑ k = 0 n / 2 ( − 1 ) n − k n n − k n − k k α n − 2 k + t = 2 α t , if n ≡ 0 mod 5 , − α t + 1 , if n ≡ 1 or 4 mod 5 , α t − 1 , if n ≡ 2 or 3 mod 5 ,
\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){\alpha ^{n - 2k + t}}} = \left\{ {\matrix{ {2{\alpha ^t},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {\alpha ^{t + 1}},} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{\alpha ^{t - 1}},} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.
and
∑ k = 0 n / 2 ( − 1 ) n − k n n − k n − k k β n − 2 k + t = 2 β t , if n ≡ 0 mod 5 , − β t α 3 − 3 α , if n ≡ 1 or 4 mod 5 , − β t β 3 − 3 β , if n ≡ 2 or 3 mod 5 .
\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){\beta ^{n - 2k + t}}} = \left\{ {\matrix{ {2{\beta ^t},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {\beta ^t}\left( {{\alpha ^3} - 3\alpha } \right),} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {\beta ^t}\left( {{\beta ^3} - 3\beta } \right),} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.
To complete the proof simplify the terms in brackets and combine according the Binet formulas.
From Theorem 3.3 we can immediately obtain the following finite binomial sums.
Corollary 3.4.
If n is a positive integer, then
∑ k = 0 n / 2 ( − 1 ) n − k n n − k n − k k F n − 2 k = 0 , if n ≡ 0 mod 5 , − 1 , if n ≡ 1 or 4 mod 5 , 1 , if n ≡ 2 or 3 mod 5 , ∑ k = 0 n / 2 ( − 1 ) n − k n n − k n − k k L n − 2 k = 4 , if n ≡ 0 mod 5 , − 1 , otherwise ,
\matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){F_{n - 2k}}} = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - 1,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){L_{n - 2k}}} = \left\{ {\matrix{ {4,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - 1,} \hfill & {otherwise,} \hfill \cr } } \right.} \hfill \cr }
and
∑ k = 0 n / 2 ( − 1 ) n − k n n − k n − k k F n + 1 − 2 k = 2 , if n ≡ 0 mod 5 , − 1 , if n ≡ 1 or 4 mod 5 , 0 , if n ≡ 2 or 3 mod 5 , ∑ k = 0 n / 2 ( − 1 ) n − k n n − k n − k k L n + 1 − 2 k = 2 , if n ≡ 0 , 2 or 3 mod 5 , − 3 , otherwise .
\matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){F_{n + 1 - 2k}}} = \left\{ {\matrix{ {2,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - 1,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {0,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){L_{n + 1 - 2k}}} = \left\{ {\matrix{ {2,} \hfill & {if\;n \equiv 0,2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - 3,} \hfill & {otherwise.} \hfill \cr } } \right.} \hfill \cr }
Remark
Identities (2.8 ) and (2.9 ) in Theorem 2.7 can also be obtained straightforwardly by evaluating the trigonometric identity (3.4 ) at x = π /5 and x = 3π /5, respectively, while using (2.6 ) and (2.7 ).
4. Fibonacci sums modulo 5 from Chebyshev polynomials
For any integer n ≥ 0, the Chebyshev polynomials {Tn (x )}n ≥0 of the first kind are defined by the second-order recurrence relation [16 ]
T n + 1 x = 2 x T n x − T n − 1 x , n ≥ 2 , T 0 x = 1 , T 1 x = x ,
\matrix{ {{T_{n + 1}}\left( x \right) = 2x{T_n}\left( x \right) - {T_{n - 1}}\left( x \right),} \hfill & {n \ge 2,} \hfill & {{T_0}\left( x \right) = 1,} \hfill & {{T_1}\left( x \right) = x,} \hfill \cr } ,
while the Chebyshev polynomials {Un (x )}n ≥0 of the second kind are defined by
U n + 1 x = 2 x U n x − U n − 1 x , n ≥ 2 , U 0 x = 1 , U 1 x = 2 x .
\matrix{ {{U_{n + 1}}\left( x \right) = 2x{U_n}\left( x \right) - {U_{n - 1}}\left( x \right),} \hfill & {n \ge 2,} \hfill & {{U_0}\left( x \right) = 1,} \hfill & {{U_1}\left( x \right) = 2x.} \hfill \cr } ,
The Chebyshev polynomials possess the representations
T n x = ∑ k = 0 n / 2 n 2 k ( x 2 − 1 ) k x n − 2 k , U n x = ∑ k = 0 n / 2 n + 1 2 k + 1 ( x 2 − 1 ) k x n − 2 k ,
\matrix{ {{T_n}\left( x \right) = \sum\limits_{k = 0}^{\left\lfloor {n/2} \right\rfloor } {\left( {\matrix{ n \cr {2k} \cr } } \right){{({x^2} - 1)}^k}{x^{n - 2k}}} ,} \hfill \cr {{U_n}\left( x \right) = \sum\limits_{k = 0}^{\left\lfloor {n/2} \right\rfloor } {\left( {\matrix{ {n + 1} \cr {2k + 1} \cr } } \right){{({x^2} - 1)}^k}{x^{n - 2k}}} ,} \hfill \cr }
and have the exact Binet-like formulas
T n x = 1 2 ( x + x 2 − 1 ) n + ( x − x 2 − 1 ) n , U n x = 1 2 x 2 − 1 ( x + x 2 − 1 ) n + 1 − ( x − x 2 − 1 ) n + 1 .
\matrix{ {{T_n}\left( x \right) = {1 \over 2}\left( {{{(x + \sqrt {{x^2} - 1} )}^n} + {{(x - \sqrt {{x^2} - 1} )}^n}} \right),} \hfill \cr {{U_n}\left( x \right) = {1 \over {2\sqrt {{x^2} - 1} }}\left( {{{(x + \sqrt {{x^2} - 1} )}^{n + 1}} - {{(x - \sqrt {{x^2} - 1} )}^{n + 1}}} \right).} \hfill \cr }
The properties of Chebyshev polynomials of the first and second kinds have been studied extensively in the literature. The reader can find in the recent papers [7 , 8 , 11 , 14 , 15 , 19 ] additional information about them, especially about their products, convolutions, power sums as well as their connections to Fibonacci numbers and polynomials.
Lemma 4.1.
For all x ∈ ℂ and a positive integer n, we have the following identities:
(4.1)
n ∑ k = 0 n ( − 1 ) k 4 k n + k n + k n − k sin 2 k x 2 = cos nx ,
n\sum\limits_{k = 0}^n {{{( - 1)}^k}{{{4^k}} \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){{\sin }^{2k}}\left( {{x \over 2}} \right)} = \cos nx,
(4.2)
n ∑ k = 0 n ( − 1 ) n − k 4 k n + k n + k n − k cos 2 k x 2 = cos nx .
n\sum\limits_{k = 0}^n {{{( - 1)}^{n - k}}{{{4^k}} \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){{\cos }^{2k}}\left( {{x \over 2}} \right)} = \cos nx.
Proof
Identities (4.1 ) and (4.2 ) are consequences of the identity
(4.3)
n ∑ k = 0 n ( − 2 ) k n + k n + k n − k 1 ∓ x k = ± 1 n T n x
n\sum\limits_{k = 0}^n {{{{{( - 2)}^k}} \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){{\left( {1 \mp x} \right)}^k}} = {\left( { \pm 1} \right)^n}{T_n}\left( x \right)
derived in [3 ].
Lemma 4.2.
If n is a non-negative integer, then
T n − α 2 = 1 , if n ≡ 0 mod 5 , − α / 2 , if n ≡ 1 or 4 mod 5 , − β / 2 , if n ≡ 2 or 3 mod 5 , T n − β 2 = 1 , if n ≡ 0 mod 5 , − β / 2 , if n ≡ 1 or 4 mod 5 , − α / 2 , if n ≡ 2 or 3 mod 5 .
\matrix{ {{T_n}\left( { - {\alpha \over 2}} \right) = \left\{ {\matrix{ {1,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - \alpha /2,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - \beta /2,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {{T_n}\left( { - {\beta \over 2}} \right) = \left\{ {\matrix{ {1,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - \beta /2,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - \alpha /2,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }
Proof
Evaluate the identity Tn (cos x ) = cos nx at x = 4π /5 and x = 2π /5, in turn.
Theorem 4.3.
If n is a positive integer and t is any integer, then
(4.4)
∑ k = 1 n / 2 n n + 2 k − 1 n + 2 k − 1 n − 2 k + 1 5 k F 2 k + t − 1 − ∑ k = 0 n / 2 n n + 2 k n + 2 k n − 2 k 5 k L 2 k + t = − L t , if n ≡ 0 mod 5 , L t + 1 / 2 , if n ≡ 1 or 4 mod 5 , − L t − 1 / 2 , if n ≡ 2 or 3 mod 5 ,
\matrix{ {\sum\limits_{k = 1}^{{\left\lceil {n/2} \right\rceil }} {{n \over {n + 2k - 1}}\left( {\matrix{ {n + 2k - 1} \cr {n - 2k + 1} \cr } } \right){5^k}{F_{2k + t - 1}}} } \hfill \cr { - \sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{n \over {n + 2k}}\left( {\matrix{ {n + 2k} \cr {n - 2k} \cr } } \right){5^k}{L_{2k + t}}} = \left\{ {\matrix{ { - {L_t},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{t + 1}}/2,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {L_{t - 1}}/2,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr }
(4.5)
∑ k = 1 n / 2 n n + 2 k − 1 n + 2 k − 1 n − 2 k + 1 5 k − 1 L 2 k + t − 1 − ∑ k = 0 n / 2 n n + 2 k n + 2 k n − 2 k 5 k F 2 k + t = − F t , if n ≡ 0 mod 5 , F t + 1 / 2 , if n ≡ 1 or 4 mod 5 , − F t − 1 / 2 , if n ≡ 2 or 3 mod 5 .
\matrix{ {\sum\limits_{k = 1}^{{\left\lceil {n/2} \right\rceil }} {{n \over {n + 2k - 1}}\left( {\matrix{ {n + 2k - 1} \cr {n - 2k + 1} \cr } } \right){5^{k - 1}}{L_{2k + t - 1}}} } \hfill \cr { - \sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{n \over {n + 2k}}\left( {\matrix{ {n + 2k} \cr {n - 2k} \cr } } \right){5^k}{F_{2k + t}}} = \left\{ {\matrix{ { - {F_t},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_{t + 1}}/2,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {F_{t - 1}}/2,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }
Proof
Using x = −α /2 and x = −β /2, in turn, in (4.3 ) with the upper sign gives, in view of Lemma 4.2 ,
∑ k = 0 n n n + k n + k n − k 5 k − 1 k + 1 λ α k + t − β k + t = − λ α t + β t , if n ≡ 0 mod 5 , λ α t + 1 + β t + 1 / 2 , if n ≡ 1 or 4 mod 5 , − λ α t − 1 + β t − 1 / 2 , if n ≡ 2 or 3 mod 5 ,
\sum\limits_{k = 0}^n {{n \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){{\left( {\sqrt 5 } \right)}^k}\left( {{{\left( { - 1} \right)}^{k + 1}}\lambda {\alpha ^{k + t}} - {\beta ^{k + t}}} \right)} = \left\{ {\matrix{ { - \left( {\lambda {\alpha ^t} + {\beta ^t}} \right),} \hfill & {{\rm if}\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {\left( {\lambda {\alpha ^{t + 1}} + {\beta ^{t + 1}}} \right)/2,} \hfill & {{\rm if}\;n \equiv 1\;{\rm or}\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - \left( {\lambda {\alpha ^{t - 1}} + {\beta ^{t - 1}}} \right)/2,} \hfill & {{\rm if}\;n \equiv 2\;{\rm or}\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.
from which (4.4 ) and (4.5 ) now follow upon setting λ = 1 and λ = −1, in turn, and using the Binet formulas and the summation identity
∑ j = 0 n f j = ∑ j = 0 n / 2 f 2 j + ∑ j = 1 n / 2 f 2 j − 1 .
\sum\limits_{j = 0}^n {{f_j}} = \sum\limits_{j = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{f_{2j}}} + \sum\limits_{j = 1}^{{\left\lceil {n/2} \right\rceil }} {{f_{2j - 1}}} .
We observe the following special cases of the prior result.
Corollary 4.4.
If n is a positive integer, then
∑ k = 1 n / 2 n n + 2 k − 1 n + 2 k − 1 n − 2 k + 1 5 k L 2 k + δ − 1 = ∑ k = 0 n / 2 n n + 2 k n + 2 k n − 2 k 5 k + 1 F 2 k + δ ,
\sum\limits_{k = 1}^{{\left\lceil {n/2} \right\rceil }} {{n \over {n + 2k - 1}}\left( {\matrix{ {n + 2k - 1} \cr {n - 2k + 1} \cr } } \right){5^k}{L_{2k + \delta - 1}}} = \sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{n \over {n + 2k}}\left( {\matrix{ {n + 2k} \cr {n - 2k} \cr } } \right){5^{k + 1}}{F_{2k + \delta }}} ,
where
δ = 0 , if n ≡ 0 mod 5 , − 1 , if n ≡ 1 or 4 mod 5 , 1 , if n ≡ 2 or 3 mod 5 .
\delta = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - 1,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.
Theorem 4.5.
If n is a positive integer and t is any integer, then
∑ k = 0 n ( − 1 ) n − k n n + k n + k n − k L 2 k + t = L t , if n = 0 mod 5 , L t − 1 / 2 , if n = 1 or 4 mod 5 , − L t + 1 / 2 , if n = 2 or 3 mod 5 , ∑ k = 0 n ( − 1 ) n − k n n + k n + k n − k F 2 k + t = F t , if n = 0 mod 5 , F t − 1 / 2 , if n = 1 or 4 mod 5 , − F t + 1 / 2 , if n = 2 or 3 mod 5 .
\matrix{ {\sum\limits_{k = 0}^n {{{( - 1)}^{n - k}}{n \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){L_{2k + t}}} = \left\{ {\matrix{ {{L_t},} \hfill & {if\;n = 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{t - 1}}/2,} \hfill & {if\;n = 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {L_{t + 1}}/2,} \hfill & {if\;n = 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 0}^n {{{( - 1)}^{n - k}}{n \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k + t}}} = \left\{ {\matrix{ {{F_t},} \hfill & {if\;n = 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_{t - 1}}/2,} \hfill & {if\;n = 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {F_{t + 1}}/2,} \hfill & {if\;n = 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }
Proof
Set x = π /5 in (4.1 ) and use (2.3 ) and the fact that sin(π /10) = −β /2 to obtain
∑ k = 0 n ( − 1 ) n − k n n + k n + k n − k β 2 k + t = β t , if n = 0 mod 5 , β t − 1 / 2 , if n = 1 or 4 mod 5 , − β t + 1 / 2 , if n = 2 or 3 mod 5 ,
\sum\limits_{k = 0}^n {{{( - 1)}^{n - k}}{n \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){\beta ^{2k + t}}} = \left\{ {\matrix{ {{\beta ^t},} \hfill & {{\rm if}\;n = 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{\beta ^{t - 1}}/2,} \hfill & {{\rm if}\;n = 1\;{\rm or}\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {\beta ^{t + 1}}/2,} \hfill & {{\rm if}\;n = 2\;{\rm or}\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.
from which the results follow by (2.5 ).
Using Theorem 4.5 , we have the following binomial Fibonacci identities modulo 5.
Corollary 4.6.
If n is a positive integer, then
∑ k = 0 n − 1 k n + k n + k n − k F 2 k + δ = 0 ,
\sum\limits_{k = 0}^n {{{{{\left( { - 1} \right)}^k}} \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k + \delta }}} = 0,
where
δ = 0 , if n = 0 mod 5 , 1 , if n = 1 or 4 mod 5 , − 1 , if n = 2 or 3 mod 5 .
\delta = \left\{ {\matrix{ {0,} \hfill & {if\;n = 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {if\;n = 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - 1,} \hfill & {if\;n = 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.
Lemma 4.7.
If x is a complex variable and n is a positive integer, then
(4.6)
∑ k = 1 n − 1 k − 1 4 k k n + k n + k n − k sin 2 k − 2 x 2 = 2 sin nx sin x ,
\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{k - 1}}{{{4^k}k} \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){{\sin }^{2k - 2}}\left( {{x \over 2}} \right)} = {{2\sin nx} \over {\sin x}},
(4.7)
∑ k = 1 n − 1 n − k 4 k k n + k n + k n − k cos 2 k − 2 x 2 = 2 sin nx sin x .
\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{n - k}}{{{4^k}k} \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){{\cos }^{2k - 2}}\left( {{x \over 2}} \right)} = {{2\sin nx} \over {\sin x}}.
Proof
Identities (4.6 ) and (4.7 ) come from the following identities derived in [3 ]:
∑ k = 1 n − 1 n − k 2 k k n + k n + k n − k 1 ∓ x k − 1 = ∓ 1 n − 1 U n − 1 x , ∑ k = 1 n − 1 n − k 4 k k n + k n + k n − k x 2 k − 1 = U 2 n − 1 x .
\matrix{ {\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{n - k}}{{{2^k}k} \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){{\left( {1 \mp x} \right)}^{k - 1}}} = {{\left( { \mp 1} \right)}^{n - 1}}{U_{n - 1}}\left( x \right)}, \hfill \cr {\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{n - k}}{{{4^k}k} \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){x^{2k - 1}}} = {U_{2n - 1}}\left( x \right)}. \hfill \cr }
Theorem 4.8.
If n is a positive integer and n is any integer, then
∑ k = 1 n − 1 k − 1 k n + k n + k n − k L 2 k + t = 0 , if n ≡ 0 mod 5 , − 1 n / 5 L t + 2 / 2 , if n ≡ 1 or 4 mod 5 , − 1 n / 5 + 1 L t + 1 / 2 , if n ≡ 2 or 3 mod 5 , ∑ k = 1 n ( − 1 ) k − 1 k n + k n + k n − k F 2 k + t = 0 , if n ≡ 0 mod 5 , − 1 n / 5 F t + 2 / 2 , if n ≡ 1 or 4 mod 5 , − 1 n / 5 + 1 F t + 1 / 2 , if n ≡ 2 or 3 mod 5 .
\matrix{ {\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{k - 1}}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){L_{2k + t}} = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {\left( { - 1} \right){^{\left\lfloor {n/5} \right\rfloor }}{L_{t + 2}}/2,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{\left( { - 1} \right)}^{\left\lfloor {n/5} \right\rfloor + 1}}{L_{t + 1}}/2,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} } \hfill \cr {\sum\limits_{k = 1}^n {{{( - 1)}^{k - 1}}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k + t}}} = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{\left( { - 1} \right)}^{\left\lfloor {n/5} \right\rfloor }}{F_{t + 2}}/2,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{\left( { - 1} \right)}^{\left\lfloor {n/5} \right\rfloor + 1}}{F_{t + 1}}/2,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }
Proof
Set x = π /5 and x = 3π /5, respectively, in (4.6 ), and use (2.6 ) and (2.7 ).
Remark
Theorem 4.8 can also be proved using (4.7 ). Using the trigonometric identities sin 2x = 2 sin x cos x and cos 3x = 4 cos3 x − 3 cos x and working with x = 2π /5 and x = 6π /5, respectively, we end with
2 ∑ k = 1 n − 1 k − 1 k n + k n + k n − k L 2 k − 1 + t = 0 , if n ≡ 0 mod 5 , − 1 n / 5 α t + 1 − β t − 3 + 3 β t − 1 , if n ≡ 1 or 4 mod 5 , ( − 1 ) n / 5 − α t + β t + 4 − 3 β t + 2 , if n ≡ 2 or 3 mod 5 ,
2\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{k - 1}}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){L_{2k - 1 + t}}} = \left\{ {\matrix{ {0,} \hfill & {{\rm if}\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {\left( { - 1} \right){^{\left\lfloor {n/5} \right\rfloor }}\left( {{\alpha ^{t + 1}} - {\beta ^{t - 3}} + 3{\beta ^{t - 1}}} \right),} \hfill & {{\rm if}\;n \equiv 1\;{\rm or}\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{{\left\lfloor {n/5} \right\rfloor }}}\left( { - {\alpha ^t} + {\beta ^{t + 4}} - 3{\beta ^{t + 2}}} \right),} \hfill & {{\rm if}\;n \equiv 2\;{\rm or}3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.
and
2 5 ∑ k = 1 n ( − 1 ) k − 1 k n + k n + k n − k F 2 k − 1 + t = 0 , if n ≡ 0 mod 5 , − 1 n / 5 α t + 1 + β t − 3 − 3 β t − 1 , if n ≡ 1 or 4 mod 5 , − 1 n / 5 − α t − β t + 4 + 3 β t + 2 , if n ≡ 2 or 3 mod 5 .
2\sqrt 5 \sum\limits_{k = 1}^n {{{( - 1)}^{k - 1}}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k - 1 + t}}} = \left\{ {\matrix{ {0,} \hfill & {{\rm if}\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {\left( { - 1} \right){^{\left\lfloor {n/5} \right\rfloor }}\left( {{\alpha ^{t + 1}} + {\beta ^{t - 3}} - 3{\beta ^{t - 1}}} \right),} \hfill & {{\rm if}\;n \equiv 1\;{\rm or}\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {\left( { - 1} \right){^{\left\lfloor {n/5} \right\rfloor }}\left( { - {\alpha ^t} - {\beta ^{t + 4}} + 3{\beta ^{t + 2}}} \right),} \hfill & {{\rm if}\;n \equiv 2\;{\rm or}\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.
To get Theorem 4.8 simplify the terms in brackets and replace t by t + 1.
Applying Theorem 4.8 yields the following two corollaries.
Corollary 4.9.
If n is a positive integer, then
∑ k = 1 n − 1 k k n + k n + k n − k F 2 k − δ = 0 ,
\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^k}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k - \delta }} = 0} ,
where
δ = 2 , if n ≡ 1 or 4 mod 5 , 1 , if n ≡ 2 or 3 mod 5 .
\delta = \left\{ {\matrix{ {2,} \hfill & {if\;n \equiv 1\;or\;4} \hfill & {\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {if\;n \equiv 2\;or\;3} \hfill & {\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.
Corollary 4.10.
If n is a positive integer and t is any integer, then we have:
If n ≡ 0 (mod 5), then
∑ k = 0 n − 1 / 2 − 1 k n − k − 1 k L n − 2 k + t = 2 ∑ k = 1 n − 1 k − 1 k n + k n + k n − k L 2 k + t , ∑ k = 0 n − 1 / 2 − 1 k n − k − 1 k F n − 2 k + t = 2 ∑ k = 1 n − 1 k − 1 k n + k n + k n − k F 2 k + t ,
\matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {\left( {n - 1} \right)/2} \right\rfloor }} {{{\left( { - 1} \right)}^k}\left( {\matrix{ {n - k - 1} \cr k \cr } } \right){L_{n - 2k + t}}} = 2\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{k - 1}}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){L_{2k + t}}} ,} \hfill \cr {\sum\limits_{k = 0}^{{\left\lfloor {\left( {n - 1} \right)/2} \right\rfloor }} {{{\left( { - 1} \right)}^k}\left( {\matrix{ {n - k - 1} \cr k \cr } } \right){F_{n - 2k + t}}} = 2\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{k - 1}}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k + t}}} ,} \hfill \cr }
if n ≡ 1 or 4 (mod 5), then
∑ k = 0 n − 1 / 2 − 1 k n − k − 1 k L n − 2 k + t = 2 ∑ k = 1 n − 1 k + 1 k n + k n + k n − k L 2 k − 1 + t , ∑ k = 0 n − 1 / 2 − 1 k n − k − 1 k F n − 2 k + t = 2 ∑ k = 1 n − 1 k + 1 k n + k n + k n − k F 2 k − 1 + t ,
\matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {\left( {n - 1} \right)/2} \right\rfloor }} {{{\left( { - 1} \right)}^k}\left( {\matrix{ {n - k - 1} \cr k \cr } } \right){L_{n - 2k + t}}} = 2\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{k + 1}}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){L_{2k - 1 + t}}} ,} \hfill \cr {\sum\limits_{k = 0}^{{\left\lfloor {\left( {n - 1} \right)/2} \right\rfloor }} {{{\left( { - 1} \right)}^k}\left( {\matrix{ {n - k - 1} \cr k \cr } } \right){F_{n - 2k + t}}} = 2\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{k + 1}}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k - 1 + t}}} ,} \hfill \cr }
if n ≡ 2 or 3 (mod 5), then
∑ k = 0 n − 1 / 2 − 1 k n − k − 1 k L n − 2 k + t = 2 ∑ k = 1 n − 1 k k n + k n + k n − k L 2 k + 1 + t , ∑ k = 0 n − 1 / 2 − 1 k n − k − 1 k F n − 2 k + t = 2 ∑ k = 1 n − 1 k k n + k n + k n − k F 2 k + 1 + t .
\matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {\left( {n - 1} \right)/2} \right\rfloor }} {{{\left( { - 1} \right)}^k}\left( {\matrix{ {n - k - 1} \cr k \cr } } \right){L_{n - 2k + t}}} = 2\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^k}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){L_{2k + 1 + t}}} ,} \hfill \cr {\sum\limits_{k = 0}^{{\left\lfloor {\left( {n - 1} \right)/2} \right\rfloor }} {{{\left( { - 1} \right)}^k}\left( {\matrix{ {n - k - 1} \cr k \cr } } \right){F_{n - 2k + t}}} = 2\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^k}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k + 1 + t}}} .} \hfill \cr }
Proof
Compare Theorem 4.8 with Theorem 2.7 .
Lemma 4.11.
If n is a non-negative integer, then
(4.8)
∑ k = 0 n − 1 n − k 4 k n + k n − k cos 2 k x = sin 2 n + 1 x sin x .
\sum\limits_{k = 0}^n {{{\left( { - 1} \right)}^{n - k}}{4^k}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){{\cos }^{2k}}x} = {{\sin \left( {\left( {2n + 1} \right)x} \right)} \over {\sin x}}.
Proof
Evaluate the identity [3 ]
∑ k = 0 n − 1 n − k 4 k n + k n − k x 2 k = U 2 n x
\sum\limits_{k = 0}^n {{{\left( { - 1} \right)}^{n - k}}{4^k}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){x^{2k}}} = {U_{2n}}\left( x \right)
at x = cos x .
Lemma 4.12.
If n is an integer, then
sin 2 n + 1 π / 5 sin π / 5 = 1 , if n ≡ 0 mod 5 , α , if n ≡ 1 mod 5 , 0 , if n ≡ 2 mod 5 , − α , if n ≡ 3 mod 5 , − 1 , if n ≡ 4 mod 5 .
{{\sin \left( {\left( {2n + 1} \right)\pi /5} \right)} \over {\sin \left( {\pi /5} \right)}} = \left\{ {\matrix{ {1,} \hfill & {if\;n \equiv 0} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr {\alpha ,} \hfill & {if\;n \equiv 1} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr {0,} \hfill & {if\;n \equiv 2} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr { - \alpha ,} \hfill & {if\;n \equiv 3} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr { - 1,} \hfill & {if\;n \equiv 4} \hfill & {\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.
From Lemmas 4.11 and 4.12 we can deduce the following Fibonacci and Lucas binomial identities modulo 5.
Theorem 4.13.
If n is a non-negative integer and t is any integer, then
∑ k = 0 n − 1 n − k n + k n − k L 2 k + t = L t , if n ≡ 0 mod 5 , L t + 1 , if n ≡ 1 mod 5 , 0 , if n ≡ 2 mod 5 , − L t + 1 , if n ≡ 3 mod 5 , − L t , if n ≡ 4 mod 5 , ∑ k = 0 n − 1 n − k n + k n − k F 2 k + t = F t , if n ≡ 0 mod 5 , F t + 1 , if n ≡ 1 mod 5 , 0 , if n ≡ 2 mod 5 , − F t + 1 , if n ≡ 3 mod 5 , − F t , if n ≡ 4 mod 5 .
\matrix{ {\sum\limits_{k = 0}^n {{{\left( { - 1} \right)}^{n - k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){L_{2k + t}}} = \left\{ {\matrix{ {{L_t},} \hfill & {if\;n \equiv 0\;} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{t + 1}},} \hfill & {if\;n \equiv 1} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr {0,} \hfill & {if\;n \equiv 2} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr { - {L_{t + 1}},} \hfill & {if\;n \equiv 3\;} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr { - {L_t},} \hfill & {if\;n \equiv 4\;} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 0}^n {{{\left( { - 1} \right)}^{n - k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k + t}}} = \left\{ {\matrix{ {{F_t},} \hfill & {if\;n \equiv 0} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_{t + 1}},} \hfill & {if\;n \equiv 1} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr {0,} \hfill & {if\;n \equiv 2\;} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr { - {F_{t + 1}},} \hfill & {if\;n \equiv 3\;} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr { - {F_t},} \hfill & {if\;n \equiv 4} \hfill & {\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }
Proof
Set x = π /5 in (4.8 ) and use Lemma 4.12 .
Lemma 4.14 ([
10 , (41.2.16.1)]).
If n is a positive integer and x is any variable, then
(4.9)
∑ k = 1 n ( − 1 ) k cos x − cos π k / n = 1 2 1 1 − cos x + ( − 1 ) n 1 + cos x − n sin x sin nx .
\sum\limits_{k = 1}^n {{{{{( - 1)}^k}} \over {\cos x - \cos \left( {\pi k/n} \right)}}} = {1 \over 2}\left( {{1 \over {1 - \cos x}} + {{{{( - 1)}^n}} \over {1 + \cos x}}} \right) - {n \over {\sin x\sin nx}}.
Further interesting identities involving Fibonacci and Lucas numbers are stated in the next theorem.
Theorem 4.15.
If n is a positive integer and t is any integer, then
∑ k = 1 n ( − 1 ) k − 1 L t − 1 + 2 L t cos π k / n 4 cos 2 π k / n − 2 cos π k / n − 1 = 1 2 ( L t + 2 + − 1 ) n F t − 1 − 2 − 1 n / 5 n . 0 , if n ≡ 0 mod 5 , F t + 1 , if n ≡ 1 or 4 mod 5 , F t , if n ≡ 2 or 3 mod 5 , ∑ k = 1 n ( − 1 ) k − 1 F t − 1 + 2 F t cos π k / n 4 cos 2 π k / n − 2 cos π k / n − 1 = 1 2 F t + 2 + ( − 1 ) n 5 L t − 1 − 2 ( − 1 ) n / 5 5 n ⋅ 0 , if n ≡ 0 mod 5 , L t + 1 , if n ≡ 1 or 4 mod 5 , L t , if n ≡ 2 or 3 mod 5 .
\matrix{ {\sum\limits_{k = 1}^n {{{{{( - 1)}^{k - 1}}\left( {{L_{t - 1}} + 2{L_t}\cos \left( {\pi k/n} \right)} \right)} \over {4\,{{\cos }^2}\left( {\pi k/n} \right) - 2\cos \left( {\pi k/n} \right) - 1}}} } \hfill \cr {\; = {1 \over 2}({L_{t + 2}} + \left( { - 1{)^n}{F_{t - 1}}} \right) - 2{{\left( { - 1} \right)}^{\left\lfloor {n/5} \right\rfloor }}n.\left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_{t + 1}},} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_t},} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 1}^n {{{{{( - 1)}^{k - 1}}\left( {{F_{t - 1}} + 2{F_t}\cos \left( {\pi k/n} \right)} \right)} \over {4\,{{\cos }^2}\left( {\pi k/n} \right) - 2\cos \left( {\pi k/n} \right) - 1}}} } \hfill \cr {\; = {1 \over 2}\left( {{F_{t + 2}} + {{{{( - 1)}^n}} \over 5}{L_{t - 1}}} \right) - {{2{{( - 1)}^{\left\lfloor {n/5} \right\rfloor }}} \over 5}n \cdot \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{t + 1}},} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_t},} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }
Proof
Set x = π /5 and x = 3π /5, in turn, in (4.9 ) to obtain
2 ∑ k = 1 n ( − 1 ) k α − 2 cos π k / n = 1 2 − α + ( − 1 ) n 2 + α − 4 n α 5 sin π / 5 sin n π / 5
2\sum\limits_{k = 1}^n {{{{{( - 1)}^k}} \over {\alpha - 2\cos \left( {\pi k/n} \right)}}} = {1 \over {2 - \alpha }} + {{{{( - 1)}^n}} \over {2 + \alpha }} - {{4n\alpha } \over {\sqrt 5 }}{{\sin \left( {\pi /5} \right)} \over {\sin \left( {n\pi /5} \right)}}
and
2 ∑ k = 1 n ( − 1 ) k β − 2 cos π k / n = 1 2 − β + ( − 1 ) n 2 + β + 4 n β 5 sin 3 π / 5 sin 3 n π / 5 ,
2\sum\limits_{k = 1}^n {{{{{( - 1)}^k}} \over {\beta - 2\cos \left( {\pi k/n} \right)}}} \; = {1 \over {2 - \beta }} + {{{{( - 1)}^n}} \over {2 + \beta }} + {{4n\beta } \over {\sqrt 5 }}{{\sin \left( {3\pi /5} \right)} \over {\sin \left( {3n\pi /5} \right)}},
from which the identities follow.
By setting t = 0 and t = 1 in Theorem 4.15 , we obtain the following.
Corollary 4.16.
If n is a positive integer, then
∑ k = 1 n ( − 1 ) k − 1 4 cos π k / n − 1 4 cos 2 π k / n − 2 cos π k / n − 1 = 3 + ( − 1 ) n 2 − 2 − 1 n / 5 n ⋅ 0 , if n ≡ 0 , 2 or 3 mod 5 , 1 , o t h e r w i s e , ∑ k = 1 n ( − 1 ) k − 1 4 cos 2 π k / n − 2 cos π k / n − 1 = 5 − ( − 1 ) n 10 − 2 ( − 1 ) n / 5 5 n ⋅ 0 , if n ≡ 0 mod 5 , 1 , if n ≡ 1 or 4 mod 5 , 2 , if n ≡ 2 or 3 mod 5 , ∑ k = 1 n ( − 1 ) k − 1 cos 2 π k / 2 n 4 cos 2 π k / n − 2 cos π k / n − 1 = 1 2 − ( − 1 ) n / 5 2 n ⋅ 0 , if n ≡ 0 mod 5 , 1 , o t h e r w i s e , ∑ k = 1 n ( − 1 ) k − 1 cos π k / n 4 cos 2 π k / n − 2 cos π k / n − 1 = 5 + ( − 1 ) n 10 − ( − 1 ) n / 5 5 n ⋅ 0 , if n ≡ 0 mod 5 , 3 , if n ≡ 1 or 4 mod 5 , 1 , if n ≡ 2 or 3 mod 5 .
\matrix{ {\sum\limits_{k = 1}^n {{{{{( - 1)}^{k - 1}}\left( {4\cos \left( {\pi k/n} \right) - 1} \right)} \over {4{{\cos }^2}\left( {\pi k/n} \right) - 2\cos \left( {\pi k/n} \right) - 1}}} = {{3 + {{( - 1)}^n}} \over 2} - 2{{\left( { - 1} \right)}^{\left\lfloor {n/5} \right\rfloor }}n \cdot \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0,2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {otherwise,} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 1}^n {{{{{( - 1)}^{k - 1}}} \over {4{{\cos }^2}\left( {\pi k/n} \right) - 2\cos \left( {\pi k/n} \right) - 1}}} = {{5 - {{( - 1)}^n}} \over {10}} - {{2{{( - 1)}^{\left\lfloor {n/5} \right\rfloor }}} \over 5}n \cdot \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {2,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 1}^n {{{{{( - 1)}^{k - 1}}{{\cos }^2}\left( {\pi k/2n} \right)} \over {4{{\cos }^2}\left( {\pi k/n} \right) - 2\cos \left( {\pi k/n} \right) - 1}}} = {1 \over 2} - {{{{( - 1)}^{\left\lfloor {n/5} \right\rfloor }}} \over 2}n \cdot \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {otherwise,} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 1}^n {{{{{( - 1)}^{k - 1}}\cos \left( {\pi k/n} \right)} \over {4{{\cos }^2}\left( {\pi k/n} \right) - 2\cos \left( {\pi k/n} \right) - 1}}} = {{5 + {{( - 1)}^n}} \over {10}} - {{{{( - 1)}^{\left\lfloor {n/5} \right\rfloor }}} \over 5}n \cdot \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {3,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }