Accesso libero

Fibonacci Sums Modulo 5

,  e   
07 giu 2024
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Preliminaries

As usual, the Fibonacci numbers Fn and the Lucas numbers Ln are defined, for n ∈ ℤ, by the following recurrence relations for n ≥ 2: Fn=Fn1+Fn2,F0=0,F1=1,Ln=Ln1+Ln2,L0=2,L1=1. \matrix{ {{F_n} = {F_{n - 1}} + {F_{n - 2}},} \hfill & {{F_0} = 0,} \hfill & {{F_1} = 1,} \hfill \cr {{L_n} = {L_{n - 1}} + {L_{n - 2}},} \hfill & {{L_0} = 2,} \hfill & {{L_1} = 1.} \hfill \cr } For negative subscripts we have F−n = (−1)n−1Fn and L−n = (−1)nLn.

Throughout this paper, we denote the golden ratio by α=1+52 \alpha = {{1 + \sqrt 5 } \over 2} and write β=152=1α \beta = {{1 - \sqrt 5 } \over 2} = - {1 \over \alpha } . The Fibonacci and Lucas numbers possess the explicit formulas (Binet formulas) Fn=αnβnαβ,Ln=αn+βn,n. \begin{array}{*{35}{l}}{{F}_{n}}=\frac{{{\alpha }^{n}}-{{\beta }^{n}}}{\alpha -\beta }, & {{L}_{n}}={{\alpha }^{n}}+{{\beta }^{n}}, & n\in \mathbb{Z}. \\ \end{array}\

The sequences {Fn}n≥0 and {Ln}n≥0 are indexed in the On-Line Encyclopedia of Integer Sequences [17] as entries A000045 and A000032, respectively. For more information we refer to Koshy [12] and Vajda [18] who have written excellent books dealing with Fibonacci and Lucas numbers.

There exists a countless number of binomial sums involving Fibonacci and Lucas numbers. For some new articles in this field we refer to the papers [1, 5, 2, 6].

In this paper, we introduce closed form expressions for finite Fibonacci and Lucas sums involving different kinds of binomial coefficients and depending on the modulo 5 nature of the upper summation limit. Our expressions are derived from various trigonometric identities, particularly utilizing Waring formulas and Chebyshev polynomials of the first and second kinds. We also present some series involving Bernoulli polynomials.

We note that some of our results were announced without proofs in [4].

Fibonacci sums modulo 5 from the sin nx and cos nx expansions

We begin with a known lemma [9, 1.331(3) and 1.331(1)].

Lemma 2.1.

If n is a positive integer, then k=1n/2(1)k1nknk1k12n2k1cosn2kx=2n1cosnxcosnx, \sum\limits_{k = 1}^{\left\lfloor {n/2} \right\rfloor } {{{{{( - 1)}^{k - 1}}n} \over k}\left( {\matrix{ {n - k - 1} \cr {k - 1} \cr } } \right){2^{n - 2k - 1}}{{\cos }^{n - 2k}}x = {2^{n - 1}}\;{{\cos }^n}\;x - \cos \;nx} , k=0n1/2(1)knk1k2n2k1cosn2k1x=sinnxsinx. \sum\limits_{k = 0}^{\left\lfloor {\left( {n - 1} \right)/2} \right\rfloor } {{{( - 1)}^k}\left( {\matrix{ {n - k - 1} \cr k \cr } } \right){2^{n - 2k - 1}}{{\cos }^{n - 2k - 1}}x = {{\sin nx} \over {\sin x}}.}

Lemma 2.2.

If n is an integer, then cosnπ5=(1)n,ifn0mod5,(1)n1α/2,ifn1or4mod5,(1)n1β/2,ifn2or3mod5, \cos \left( {{{n\pi } \over 5}} \right) = \left\{ {\matrix{ {{{( - 1)}^n},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{n - 1}}\alpha /2,} \hfill & {if\;n \equiv 1\;\;or\;\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{n - 1}}\beta /2,} \hfill & {if\;n \equiv 2\;\;or\;\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right. cos2nπ5=1,ifn0mod5,β/2,ifn1or4mod5,α/2,ifn2or3mod5. \cos \left( {{{2n\pi } \over 5}} \right) = \left\{ {\matrix{ {1,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - \beta /2,} \hfill & {if\;n \equiv 1\;\;or\;\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - \alpha /2,} \hfill & {if\;n \equiv 2\;\;or\;\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.

Proof

Relations stated in (2.3) can be proved easily by elementary methods. For instance, they follow by applying the addition theorem for the cosine function cosa+b=cosacosbsinasinb \cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b combined with the special values cosπ5=α2,cos2π5=β2,cos3π5=β2,cos4π5=α2. \matrix{ {\cos \left( {{\pi \over 5}} \right) = {\alpha \over 2},} & {\cos \left( {{{2\pi } \over 5}} \right) = - {\beta \over 2},} & {\cos \left( {{{3\pi } \over 5}} \right) = {\beta \over 2},} & {\cos \left( {{{4\pi } \over 5}} \right) = - {\alpha \over 2}} \cr } .

Relations stated in (2.4) follow directly from (2.3).

In our first main results we state Lucas (Fibonacci) identities involving binomial coefficient and additional parameter.

Theorem 2.3.

If n is a positive integer and t is any integer, then nk=1n/2(1)k1knk1k1Ln2k+t=Ln+t(1)n2Lt,ifn0mod5,Ln+t+(1)nLt+1,ifn1or4mod5,Ln+t(1)nLt1,ifn2or3mod5,nk=1n/2(1)k1knk1k1Fn2k+t=Fn+t(1)n2Ft,ifn0mod5,Fn+t+(1)nFt+1,ifn1or4mod5,Fn+t(1)nFt1,ifn2or3mod5. \matrix{ {n\sum\limits_{k = 1}^{\left\lfloor {n/2} \right\rfloor } {{{{{( - 1)}^{k - 1}}} \over k}\left( {\matrix{ {n - k - 1} \cr {k - 1} \cr } } \right){L_{n - 2k + t}}} = \left\{ {\matrix{ {{L_{n + t}} - {{( - 1)}^n}2{L_t},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{n + t}} + {{( - 1)}^n}{L_{t + 1}},} \hfill & {if\;n \equiv 1\;\;or\;\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{n + t}} - {{( - 1)}^n}{L_{t - 1}},} \hfill & {if\;n \equiv 2\;\;or\;\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {n\sum\limits_{k = 1}^{\left\lfloor {n/2} \right\rfloor } {{{{{( - 1)}^{k - 1}}} \over k}\left( {\matrix{ {n - k - 1} \cr {k - 1} \cr } } \right){F_{n - 2k + t}}} = \left\{ {\matrix{ {{F_{n + t}} - {{( - 1)}^n}2{F_t},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_{n + t}} + {{( - 1)}^n}{F_{t + 1}},} \hfill & {if\;n \equiv 1\;\;or\;\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_{n + t}} - {{( - 1)}^n}{F_{t - 1}},} \hfill & {if\;n \equiv 2\;\;or\;\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }

Proof

Set x = π/5 in (2.1) and use (2.3) and the fact that 2αr=Lr+Fr5,2βr=LrFr5 \matrix{ {2{\alpha ^r} = {L_r} + {F_r}\sqrt 5 ,} \hfill & {2{\beta ^r} = {L_r} - {F_r}\sqrt 5 } \hfill \cr } for any integer r.

We proceed with some corollaries.

Corollary 2.4.

If n is a positive integer, then nk=1n/2(1)k1knk1k1F2k=2Fn,ifn0mod5,Fn1,ifn1or4mod5,Fn+1,ifn2or3mod5,nk=1n/2(1)k1knk1k1Fn2k+δ=Fn+δ, \matrix{ {n\sum\limits_{k = 1}^{\left\lfloor {n/2} \right\rfloor } {{{{{( - 1)}^{k - 1}}} \over k}\left( {\matrix{ {n - k - 1} \cr {k - 1} \cr } } \right){F_{2k}}} = \left\{ {\matrix{ { - 2{F_n},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {F_{n - 1}},} \hfill & {if\;n \equiv 1\;\;or\;\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_{n + 1}},} \hfill & {if\;n \equiv 2\;\;or\;\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {n\sum\limits_{k = 1}^{\left\lfloor {n/2} \right\rfloor } {{{{{( - 1)}^{k - 1}}} \over k}\left( {\matrix{ {n - k - 1} \cr {k - 1} \cr } } \right){F_{n - 2k + \delta }} = {F_{n + \delta }},} } \hfill \cr } where δ=0,ifn0mod5,1,ifn1or4mod5,1,ifn2or3mod5. \delta = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - 1,} \hfill & {if\;n \equiv 1\;\;or\;\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {if\;n \equiv 2\;\;or\;\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.

Corollary 2.5.

If n is a positive integer, then nk=1n/2(1)k1knk1k1Ln2k+1=Ln1(1)n3,ifn2 or 3mod5,Ln1+(1)n2,otherwise,nk=1n/2(1)k1knk1k1Ln2k+1=Ln+1+(1)n3,ifn1 or 4mod5,Ln+1(1)n2,otherwise,nk=1n/2(1)k1knk1k1Ln2k=Ln(1)n4,ifn0mod5,Ln+(1)n,otherwise. \matrix{ {n\sum\limits_{k = 1}^{\left\lfloor {n/2} \right\rfloor } {{{{{( - 1)}^{k - 1}}} \over k}\left( {\matrix{ {n - k - 1} \cr {k - 1} \cr } } \right){L_{n - 2k + 1}}} = \left\{ {\matrix{ {{L_{n - 1}} - {{( - 1)}^n}3,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{n - 1}} + {{( - 1)}^n}2,} \hfill & {otherwise,} \hfill \cr } } \right.} \hfill \cr {n\sum\limits_{k = 1}^{\left\lfloor {n/2} \right\rfloor } {{{{{( - 1)}^{k - 1}}} \over k}\left( {\matrix{ {n - k - 1} \cr {k - 1} \cr } } \right){L_{n - 2k + 1}}} = \left\{ {\matrix{ {{L_{n + 1}} + {{( - 1)}^n}3,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{n + 1}} - {{( - 1)}^n}2,} \hfill & {otherwise,} \hfill \cr } } \right.} \hfill \cr {n\sum\limits_{k = 1}^{\left\lfloor {n/2} \right\rfloor } {{{{{( - 1)}^{k - 1}}} \over k}\left( {\matrix{ {n - k - 1} \cr {k - 1} \cr } } \right){L_{n - 2k}}} = \left\{ {\matrix{ {{L_n} - {{( - 1)}^n}4,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_n} + {{( - 1)}^n},} \hfill & {otherwise.} \hfill \cr } } \right.} \hfill \cr }

Lemma 2.6.

If n is an integer, then sinnπ/5sinπ/5=0,ifn0mod5,(1)n/5,ifn1 or 4mod5,(1)n/5α,ifn2 or 3mod5, {{\sin \left( {n\pi /5} \right)} \over {\sin \left( {\pi /5} \right)}} = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{\left\lfloor {n/5} \right\rfloor }},} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{{\left\lfloor {n/5} \right\rfloor }}}\alpha ,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right. sin3nπ/5sin3π/5=0,ifn0mod5,(1)n/5,ifn1 or 4mod5,(1)n/5β,ifn2 or 3mod5. {{\sin \left( {3n\pi /5} \right)} \over {\sin \left( {3\pi /5} \right)}} = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{\left\lfloor {n/5} \right\rfloor }},} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{\left\lfloor {n/5} \right\rfloor }}\beta ,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.

From Lemma 2.6 we can deduce the following Lucas and Fibonacci binomial identities modulo 5.

Theorem 2.7.

If n is a positive integer and t is any integer, then k=0n/2(1)knkkLn2k+t=(1)n+1/5Lt,ifn0 or 3mod5,(1)n+1/5Lt+1,ifn1 or 2mod5,0,ifn4mod5, \sum\limits_{k = 0}^{^{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^k}\left( {\matrix{{n - k} \cr k \cr } } \right){L_{n - 2k + t}}} = \left\{ {\matrix{{{{( - 1)}^{\left\lfloor {\left( {n + 1} \right)/5} \right\rfloor }}{L_t},} \hfill & {if\;n \equiv 0\;or\;3\;\;\;\;\left( {{\rm mod} \;5} \right),} \hfill \cr {{{( - 1)}^{\left\lfloor {\left( {n + 1} \right)/5} \right\rfloor }}{L_{t + 1}},} \hfill & {if\;n \equiv 1\;or\;2\;\;\;\;\left( {{\rm mod} \;5} \right),} \hfill \cr {0,} \hfill & {if\;n \equiv 4\;\;\;\;\left( {{\rm mod} \;5} \right),} \hfill \cr } } \right. k=0n/2(1)knkkFn2k+t=(1)n+1/5Ft,ifn0 or 3mod5,(1)n/5Ft+1,ifn1 or 2mod5,0,ifn4mod5. \sum\limits_{k = 0}^{^{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^k}\left( {\matrix{{n - k} \cr k \cr } } \right){F_{n - 2k + t}}} = \left\{ {\matrix{{{{( - 1)}^{\left\lfloor {\left( {n + 1} \right)/5} \right\rfloor }}{F_t},} \hfill & {if\;n \equiv 0\;or\;3\;\;\;\;\left( {{\rm mod} \;5} \right),} \hfill \cr {{{( - 1)}^{\left\lfloor {n/5} \right\rfloor }}{F_{t + 1}},} \hfill & {if\;n \equiv 1\;or\;2\;\;\;\;\left( {{\rm mod} \;5} \right),} \hfill \cr {0,} \hfill & {if\;n \equiv 4\;\;\;\;\left( {{\rm mod} \;5} \right).} \hfill \cr } } \right.

Proof

Set x = π/5 in (2.2), use (2.6), (2.5) and simplify.

A variant of the Lucas and Fibonacci sums with even subscripts is stated as the next corollary.

Corollary 2.8.

If n is a positive integer, then k=0n/2(1)nknkkL2k=(1)n+1/5Ln,ifn0 or 3mod5,(1)n+1/5+1Ln1,ifn1 or 2mod5,0,ifn4mod5,k=0n/2(1)nknkkF2k=(1)n+1/5Fn,ifn0 or 3mod5,(1)n+1/5+1Fn1,ifn1 or 2mod5,0,ifn4mod5. \matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){L_{2k}} = } \left\{ {\matrix{ {{{( - 1)}^{{\left\lfloor {\left( {n + 1} \right)/5} \right\rfloor }}}{L_n},} \hfill & {if\;n \equiv 0\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{{\left\lfloor {\left( {n + 1} \right)/5} \right\rfloor + 1}}}{L_{n - 1}},} \hfill & {if\;n \equiv 1\;or\;2\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {0,} \hfill & {if\;n \equiv 4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){F_{2k}} = } \left\{ {\matrix{ {{{( - 1)}^{{\left\lfloor {\left( {n + 1} \right)/5} \right\rfloor }}}{F_n},} \hfill & {if\;n \equiv 0\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{{\left\lfloor {\left( {n + 1} \right)/5} \right\rfloor + 1}}}{F_{n - 1}},} \hfill & {if\;n \equiv 1\;or\;2\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {0,} \hfill & {if\;n \equiv 4\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }

Corollary 2.9.

If n is a positive integer, then k=0n/2(1)knkkFn2k+1=0,ifn4mod5,(1)n+1/5,otherwise,k=0n/2(1)knkkFn2kδ=0, \matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^k}\left( {\matrix{ {n - k} \cr k \cr } } \right){F_{n - 2k + 1}}} = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{{\left\lfloor {\left( {n + 1} \right)/5} \right\rfloor }}},} \hfill & {otherwise,} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^k}\left( {\matrix{ {n - k} \cr k \cr } } \right){F_{n - 2k - \delta }}} = 0,} \hfill \cr } where δ=0,ifn0 or 3mod5,1,ifn1 or 2mod5. \delta = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;or\;3} \hfill & {\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {\;if\;n \equiv 1\;or\;2} \hfill & {\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.

Fibonacci sums modulo 5 from Waring formulas

This section is based on utilizing the following trigonometric identities with the use of Waring formulas.

Lemma 3.1.

k=0n/2(1)knnknkk2n2k1cosn2kx=cosnx, \sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^k}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){2^{n - 2k - 1}}{{\cos }^{n - 2k}}x} = \cos nx, k=0n1/2(1)n1/2knnknkk2n2k1sinn2kx=sinnx,nodd, \sum\limits_{k = 0}^{{\left( {n - 1} \right)/2}} {{{( - 1)}^{\left( {n - 1} \right)/2 - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){2^{n - 2k - 1}}{{\sin }^{n - 2k}}} x = \sin nx,\;\;\;n\;odd, k=0n/2(1)n/2knnknkk2n2k1sinn2kx=cosnx,neven. \sum\limits_{k = 0}^{{n/2}} {{{( - 1)}^{n/2 - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){2^{n - 2k - 1}}{\rm{si}}{{\rm{n}}^{n - 2k}}x = {{\cos}}\,nx,} \;\;\;n\;even.

Proof

Consider the Waring formula k=0n/2(1)knnknkk(x1+x2)n2k(x1x2)k=x1n+x2n. \sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^k}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){{({x_1} + {x_2})}^{n - 2k}}{{({x_1}{x_2})}^k} = x_1^n + x_2^n} . Let i be the imaginary unit. The choice x1 = eix/2, x2 = e−ix/2 produces (3.1), while the choice x1 = eix/(2i), x2 = −e−ix/(2i) gives x1 + x2 = sin x, x1x2 = 1/4, and x1n+x2n=(1)n1/221nsinnx,if n is odd,(1)n/221ncosnx,if n is even, x_1^n + x_2^n = \left\{ {\matrix{ {{{( - 1)}^{\left( {n - 1} \right)/2}}{2^{1 - n}}\;\sin nx,} \hfill & {{\rm{if}}\;n\;{\rm{is}}\;{\rm{odd}},} \hfill \cr {{{( - 1)}^{n/2}}{2^{1 - n}}\cos nx,} \hfill & {{\rm{if}}\;n\;{\rm{is}}\;{\rm{even}},} \hfill \cr } } \right. and hence (3.2) and (3.3).

Lemma 3.2.

If n is a positive integer, then k=0n/2(1)knkk2n2kcosn2kx=sinn+1xsinx,k=0n1/2(1)n1/2knkk2n2ksinn2kx=sinn+1xcosx,nodd,k=0n/2(1)n/2knkk2n2ksinn2kx=cosn+1xcosx,neven. \matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^k}\left( {\matrix{ {n - k} \cr k \cr } } \right){2^{n - 2k}}{{\cos }^{n - 2k}}x} = {{\sin \left( {\left( {n + 1} \right)x} \right)} \over {\sin x}},} \hfill \cr {\sum\limits_{k = 0}^{{\left( {n - 1} \right)/2}} {{{( - 1)}^{\left( {n - 1} \right)/2 - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){2^{n - 2k}}{{\sin }^{n - 2k}}x} = {{\sin \left( {\left( {n + 1} \right)x} \right)} \over {\cos x}},\;\;\;n\;odd,} \hfill \cr {\sum\limits_{k = 0}^{{n/2}} {{{( - 1)}^{n/2 - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){2^{n - 2k}}{{\sin }^{n - 2k}}x} = {{\cos \left( {\left( {n + 1} \right)x} \right)} \over {\cos x}},\;\;\;n\;even.} \hfill \cr }

Proof

Similar to the proof of Lemma 3.1. We use the dual to the Waring formula k=0n/2(1)knkk(x1+x2)n2k(x1x2)k=x1n+1x2n+1x1x2. \sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^k}\left( {\matrix{ {n - k} \cr k \cr } } \right){{({x_1} + {x_2})}^{n - 2k}}{{({x_1}{x_2})}^k}} = {{x_1^{n + 1} - x_2^{n + 1}} \over {{x_1} - {x_2}}}.

Theorem 3.3.

If n is a positive integer and t is any integer, then k=0n/2(1)nknnknkkFn2k+t=2Ft,ifn0mod5,Ft+1,ifn1 or 4mod5,Ft1,ifn2 or 3mod5,k=0n/2(1)nknnknkkLn2k+t=2Lt,ifn0mod5,Lt+1,ifn1 or 4mod5,Lt1,ifn2 or 3mod5. \matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){F_{n - 2k + t}}} = \left\{ {\matrix{ {2{F_t},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {F_{t + 1}},} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_{t - 1}},} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){L_{n - 2k + t}}} = \left\{ {\matrix{ {2{L_t},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {L_{t + 1}},} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{t - 1}},} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }

Proof

We apply equation (3.1). Inserting x = π/5 and x = 3π/5, respectively, and keeping in mind the trigonometric identity cos 3x = 4 cos3 x−3 cos x we end with k=0n/2(1)nknnknkkαn2k+t=2αt,ifn0mod5,αt+1,ifn1 or 4mod5,αt1,ifn2 or 3mod5, \sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){\alpha ^{n - 2k + t}}} = \left\{ {\matrix{ {2{\alpha ^t},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {\alpha ^{t + 1}},} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{\alpha ^{t - 1}},} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right. and k=0n/2(1)nknnknkkβn2k+t=2βt,ifn0mod5,βtα33α,ifn1 or 4mod5,βtβ33β,ifn2 or 3mod5. \sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){\beta ^{n - 2k + t}}} = \left\{ {\matrix{ {2{\beta ^t},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {\beta ^t}\left( {{\alpha ^3} - 3\alpha } \right),} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {\beta ^t}\left( {{\beta ^3} - 3\beta } \right),} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right. To complete the proof simplify the terms in brackets and combine according the Binet formulas.

From Theorem 3.3 we can immediately obtain the following finite binomial sums.

Corollary 3.4.

If n is a positive integer, then k=0n/2(1)nknnknkkFn2k=0,ifn0mod5,1,ifn1 or 4mod5,1,ifn2 or 3mod5,k=0n/2(1)nknnknkkLn2k=4,ifn0mod5,1,otherwise, \matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){F_{n - 2k}}} = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - 1,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){L_{n - 2k}}} = \left\{ {\matrix{ {4,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - 1,} \hfill & {otherwise,} \hfill \cr } } \right.} \hfill \cr } and k=0n/2(1)nknnknkkFn+12k=2,ifn0mod5,1,ifn1 or 4mod5,0,ifn2 or 3mod5,k=0n/2(1)nknnknkkLn+12k=2,ifn0,2 or 3mod5,3,otherwise. \matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){F_{n + 1 - 2k}}} = \left\{ {\matrix{ {2,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - 1,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {0,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{( - 1)}^{n - k}}{n \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){L_{n + 1 - 2k}}} = \left\{ {\matrix{ {2,} \hfill & {if\;n \equiv 0,2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - 3,} \hfill & {otherwise.} \hfill \cr } } \right.} \hfill \cr }

Remark

Identities (2.8) and (2.9) in Theorem 2.7 can also be obtained straightforwardly by evaluating the trigonometric identity (3.4) at x = π/5 and x = 3π/5, respectively, while using (2.6) and (2.7).

Fibonacci sums modulo 5 from Chebyshev polynomials

For any integer n ≥ 0, the Chebyshev polynomials {Tn(x)}n≥0 of the first kind are defined by the second-order recurrence relation [16] Tn+1x=2xTnxTn1x,n2,T0x=1,T1x=x, \matrix{ {{T_{n + 1}}\left( x \right) = 2x{T_n}\left( x \right) - {T_{n - 1}}\left( x \right),} \hfill & {n \ge 2,} \hfill & {{T_0}\left( x \right) = 1,} \hfill & {{T_1}\left( x \right) = x,} \hfill \cr } , while the Chebyshev polynomials {Un(x)}n≥0 of the second kind are defined by Un+1x=2xUnxUn1x,n2,U0x=1,U1x=2x. \matrix{ {{U_{n + 1}}\left( x \right) = 2x{U_n}\left( x \right) - {U_{n - 1}}\left( x \right),} \hfill & {n \ge 2,} \hfill & {{U_0}\left( x \right) = 1,} \hfill & {{U_1}\left( x \right) = 2x.} \hfill \cr } , The Chebyshev polynomials possess the representations Tnx=k=0n/2n2k(x21)kxn2k,Unx=k=0n/2n+12k+1(x21)kxn2k, \matrix{ {{T_n}\left( x \right) = \sum\limits_{k = 0}^{\left\lfloor {n/2} \right\rfloor } {\left( {\matrix{ n \cr {2k} \cr } } \right){{({x^2} - 1)}^k}{x^{n - 2k}}} ,} \hfill \cr {{U_n}\left( x \right) = \sum\limits_{k = 0}^{\left\lfloor {n/2} \right\rfloor } {\left( {\matrix{ {n + 1} \cr {2k + 1} \cr } } \right){{({x^2} - 1)}^k}{x^{n - 2k}}} ,} \hfill \cr } and have the exact Binet-like formulas Tnx=12(x+x21)n+(xx21)n,Unx=12x21(x+x21)n+1(xx21)n+1. \matrix{ {{T_n}\left( x \right) = {1 \over 2}\left( {{{(x + \sqrt {{x^2} - 1} )}^n} + {{(x - \sqrt {{x^2} - 1} )}^n}} \right),} \hfill \cr {{U_n}\left( x \right) = {1 \over {2\sqrt {{x^2} - 1} }}\left( {{{(x + \sqrt {{x^2} - 1} )}^{n + 1}} - {{(x - \sqrt {{x^2} - 1} )}^{n + 1}}} \right).} \hfill \cr }

The properties of Chebyshev polynomials of the first and second kinds have been studied extensively in the literature. The reader can find in the recent papers [7, 8, 11, 14, 15, 19] additional information about them, especially about their products, convolutions, power sums as well as their connections to Fibonacci numbers and polynomials.

Lemma 4.1.

For all x ∈ ℂ and a positive integer n, we have the following identities: nk=0n(1)k4kn+kn+knksin2kx2=cosnx, n\sum\limits_{k = 0}^n {{{( - 1)}^k}{{{4^k}} \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){{\sin }^{2k}}\left( {{x \over 2}} \right)} = \cos nx, nk=0n(1)nk4kn+kn+knkcos2kx2=cosnx. n\sum\limits_{k = 0}^n {{{( - 1)}^{n - k}}{{{4^k}} \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){{\cos }^{2k}}\left( {{x \over 2}} \right)} = \cos nx.

Proof

Identities (4.1) and (4.2) are consequences of the identity nk=0n(2)kn+kn+knk1xk=±1nTnx n\sum\limits_{k = 0}^n {{{{{( - 2)}^k}} \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){{\left( {1 \mp x} \right)}^k}} = {\left( { \pm 1} \right)^n}{T_n}\left( x \right) derived in [3].

Lemma 4.2.

If n is a non-negative integer, then Tnα2=1,ifn0mod5,α/2,ifn1 or 4mod5,β/2,ifn2 or 3mod5,Tnβ2=1,ifn0mod5,β/2,ifn1 or 4mod5,α/2,ifn2 or 3mod5. \matrix{ {{T_n}\left( { - {\alpha \over 2}} \right) = \left\{ {\matrix{ {1,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - \alpha /2,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - \beta /2,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {{T_n}\left( { - {\beta \over 2}} \right) = \left\{ {\matrix{ {1,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - \beta /2,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - \alpha /2,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }

Proof

Evaluate the identity Tn(cos x) = cos nx at x = 4π/5 and x = 2π/5, in turn.

Theorem 4.3.

If n is a positive integer and t is any integer, then k=1n/2nn+2k1n+2k1n2k+15kF2k+t1k=0n/2nn+2kn+2kn2k5kL2k+t=Lt,ifn0mod5,Lt+1/2,ifn1 or 4mod5,Lt1/2,ifn2 or 3mod5, \matrix{ {\sum\limits_{k = 1}^{{\left\lceil {n/2} \right\rceil }} {{n \over {n + 2k - 1}}\left( {\matrix{ {n + 2k - 1} \cr {n - 2k + 1} \cr } } \right){5^k}{F_{2k + t - 1}}} } \hfill \cr { - \sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{n \over {n + 2k}}\left( {\matrix{ {n + 2k} \cr {n - 2k} \cr } } \right){5^k}{L_{2k + t}}} = \left\{ {\matrix{ { - {L_t},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{t + 1}}/2,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {L_{t - 1}}/2,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr } k=1n/2nn+2k1n+2k1n2k+15k1L2k+t1k=0n/2nn+2kn+2kn2k5kF2k+t=Ft,ifn0mod5,Ft+1/2,ifn1 or 4mod5,Ft1/2,ifn2 or 3mod5. \matrix{ {\sum\limits_{k = 1}^{{\left\lceil {n/2} \right\rceil }} {{n \over {n + 2k - 1}}\left( {\matrix{ {n + 2k - 1} \cr {n - 2k + 1} \cr } } \right){5^{k - 1}}{L_{2k + t - 1}}} } \hfill \cr { - \sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{n \over {n + 2k}}\left( {\matrix{ {n + 2k} \cr {n - 2k} \cr } } \right){5^k}{F_{2k + t}}} = \left\{ {\matrix{ { - {F_t},} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_{t + 1}}/2,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {F_{t - 1}}/2,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }

Proof

Using x = −α/2 and x = −β/2, in turn, in (4.3) with the upper sign gives, in view of Lemma 4.2, k=0nnn+kn+knk5k1k+1λαk+tβk+t=λαt+βt,ifn0mod5,λαt+1+βt+1/2,ifn1 or 4mod5,λαt1+βt1/2,ifn2 or 3mod5, \sum\limits_{k = 0}^n {{n \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){{\left( {\sqrt 5 } \right)}^k}\left( {{{\left( { - 1} \right)}^{k + 1}}\lambda {\alpha ^{k + t}} - {\beta ^{k + t}}} \right)} = \left\{ {\matrix{ { - \left( {\lambda {\alpha ^t} + {\beta ^t}} \right),} \hfill & {{\rm if}\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {\left( {\lambda {\alpha ^{t + 1}} + {\beta ^{t + 1}}} \right)/2,} \hfill & {{\rm if}\;n \equiv 1\;{\rm or}\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - \left( {\lambda {\alpha ^{t - 1}} + {\beta ^{t - 1}}} \right)/2,} \hfill & {{\rm if}\;n \equiv 2\;{\rm or}\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right. from which (4.4) and (4.5) now follow upon setting λ = 1 and λ = −1, in turn, and using the Binet formulas and the summation identity j=0nfj=j=0n/2f2j+j=1n/2f2j1. \sum\limits_{j = 0}^n {{f_j}} = \sum\limits_{j = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{f_{2j}}} + \sum\limits_{j = 1}^{{\left\lceil {n/2} \right\rceil }} {{f_{2j - 1}}} .

We observe the following special cases of the prior result.

Corollary 4.4.

If n is a positive integer, then k=1n/2nn+2k1n+2k1n2k+15kL2k+δ1=k=0n/2nn+2kn+2kn2k5k+1F2k+δ, \sum\limits_{k = 1}^{{\left\lceil {n/2} \right\rceil }} {{n \over {n + 2k - 1}}\left( {\matrix{ {n + 2k - 1} \cr {n - 2k + 1} \cr } } \right){5^k}{L_{2k + \delta - 1}}} = \sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{n \over {n + 2k}}\left( {\matrix{ {n + 2k} \cr {n - 2k} \cr } } \right){5^{k + 1}}{F_{2k + \delta }}} , where δ=0,ifn0mod5,1,ifn1 or 4mod5,1,ifn2 or 3mod5. \delta = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - 1,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.

Theorem 4.5.

If n is a positive integer and t is any integer, then k=0n(1)nknn+kn+knkL2k+t=Lt,ifn=0mod5,Lt1/2,ifn=1 or 4mod5,Lt+1/2,ifn=2 or 3mod5,k=0n(1)nknn+kn+knkF2k+t=Ft,ifn=0mod5,Ft1/2,ifn=1 or 4mod5,Ft+1/2,ifn=2 or 3mod5. \matrix{ {\sum\limits_{k = 0}^n {{{( - 1)}^{n - k}}{n \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){L_{2k + t}}} = \left\{ {\matrix{ {{L_t},} \hfill & {if\;n = 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{t - 1}}/2,} \hfill & {if\;n = 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {L_{t + 1}}/2,} \hfill & {if\;n = 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 0}^n {{{( - 1)}^{n - k}}{n \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k + t}}} = \left\{ {\matrix{ {{F_t},} \hfill & {if\;n = 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_{t - 1}}/2,} \hfill & {if\;n = 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {F_{t + 1}}/2,} \hfill & {if\;n = 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }

Proof

Set x = π/5 in (4.1) and use (2.3) and the fact that sin(π/10) = −β/2 to obtain k=0n(1)nknn+kn+knkβ2k+t=βt,ifn=0mod5,βt1/2,ifn=1 or 4mod5,βt+1/2,ifn=2 or 3mod5, \sum\limits_{k = 0}^n {{{( - 1)}^{n - k}}{n \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){\beta ^{2k + t}}} = \left\{ {\matrix{ {{\beta ^t},} \hfill & {{\rm if}\;n = 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{\beta ^{t - 1}}/2,} \hfill & {{\rm if}\;n = 1\;{\rm or}\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {\beta ^{t + 1}}/2,} \hfill & {{\rm if}\;n = 2\;{\rm or}\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right. from which the results follow by (2.5).

Using Theorem 4.5, we have the following binomial Fibonacci identities modulo 5.

Corollary 4.6.

If n is a positive integer, then k=0n1kn+kn+knkF2k+δ=0, \sum\limits_{k = 0}^n {{{{{\left( { - 1} \right)}^k}} \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k + \delta }}} = 0, where δ=0,ifn=0mod5,1,ifn=1 or 4mod5,1,ifn=2 or 3mod5. \delta = \left\{ {\matrix{ {0,} \hfill & {if\;n = 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {if\;n = 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - 1,} \hfill & {if\;n = 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.

Lemma 4.7.

If x is a complex variable and n is a positive integer, then k=1n1k14kkn+kn+knksin2k2x2=2sinnxsinx, \sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{k - 1}}{{{4^k}k} \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){{\sin }^{2k - 2}}\left( {{x \over 2}} \right)} = {{2\sin nx} \over {\sin x}}, k=1n1nk4kkn+kn+knkcos2k2x2=2sinnxsinx. \sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{n - k}}{{{4^k}k} \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){{\cos }^{2k - 2}}\left( {{x \over 2}} \right)} = {{2\sin nx} \over {\sin x}}.

Proof

Identities (4.6) and (4.7) come from the following identities derived in [3]: k=1n1nk2kkn+kn+knk1xk1=1n1Un1x,k=1n1nk4kkn+kn+knkx2k1=U2n1x. \matrix{ {\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{n - k}}{{{2^k}k} \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){{\left( {1 \mp x} \right)}^{k - 1}}} = {{\left( { \mp 1} \right)}^{n - 1}}{U_{n - 1}}\left( x \right)}, \hfill \cr {\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{n - k}}{{{4^k}k} \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){x^{2k - 1}}} = {U_{2n - 1}}\left( x \right)}. \hfill \cr }

Theorem 4.8.

If n is a positive integer and n is any integer, then k=1n1k1kn+kn+knkL2k+t=0,ifn0mod5,1n/5Lt+2/2,ifn1 or 4mod5,1n/5+1Lt+1/2,ifn2 or 3mod5,k=1n(1)k1kn+kn+knkF2k+t=0,ifn0mod5,1n/5Ft+2/2,ifn1 or 4mod5,1n/5+1Ft+1/2,ifn2 or 3mod5. \matrix{ {\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{k - 1}}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){L_{2k + t}} = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {\left( { - 1} \right){^{\left\lfloor {n/5} \right\rfloor }}{L_{t + 2}}/2,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{\left( { - 1} \right)}^{\left\lfloor {n/5} \right\rfloor + 1}}{L_{t + 1}}/2,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} } \hfill \cr {\sum\limits_{k = 1}^n {{{( - 1)}^{k - 1}}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k + t}}} = \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{\left( { - 1} \right)}^{\left\lfloor {n/5} \right\rfloor }}{F_{t + 2}}/2,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{\left( { - 1} \right)}^{\left\lfloor {n/5} \right\rfloor + 1}}{F_{t + 1}}/2,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }

Proof

Set x = π/5 and x = 3π/5, respectively, in (4.6), and use (2.6) and (2.7).

Remark

Theorem 4.8 can also be proved using (4.7). Using the trigonometric identities sin 2x = 2 sin x cos x and cos 3x = 4 cos3 x − 3 cos x and working with x = 2π/5 and x = 6π/5, respectively, we end with 2k=1n1k1kn+kn+knkL2k1+t=0,ifn0mod5,1n/5αt+1βt3+3βt1,ifn1 or 4mod5,(1)n/5αt+βt+43βt+2,ifn2 or 3mod5, 2\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{k - 1}}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){L_{2k - 1 + t}}} = \left\{ {\matrix{ {0,} \hfill & {{\rm if}\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {\left( { - 1} \right){^{\left\lfloor {n/5} \right\rfloor }}\left( {{\alpha ^{t + 1}} - {\beta ^{t - 3}} + 3{\beta ^{t - 1}}} \right),} \hfill & {{\rm if}\;n \equiv 1\;{\rm or}\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{{( - 1)}^{{\left\lfloor {n/5} \right\rfloor }}}\left( { - {\alpha ^t} + {\beta ^{t + 4}} - 3{\beta ^{t + 2}}} \right),} \hfill & {{\rm if}\;n \equiv 2\;{\rm or}3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right. and 25k=1n(1)k1kn+kn+knkF2k1+t=0,ifn0mod5,1n/5αt+1+βt33βt1,ifn1 or 4mod5,1n/5αtβt+4+3βt+2,ifn2 or 3mod5. 2\sqrt 5 \sum\limits_{k = 1}^n {{{( - 1)}^{k - 1}}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k - 1 + t}}} = \left\{ {\matrix{ {0,} \hfill & {{\rm if}\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {\left( { - 1} \right){^{\left\lfloor {n/5} \right\rfloor }}\left( {{\alpha ^{t + 1}} + {\beta ^{t - 3}} - 3{\beta ^{t - 1}}} \right),} \hfill & {{\rm if}\;n \equiv 1\;{\rm or}\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {\left( { - 1} \right){^{\left\lfloor {n/5} \right\rfloor }}\left( { - {\alpha ^t} - {\beta ^{t + 4}} + 3{\beta ^{t + 2}}} \right),} \hfill & {{\rm if}\;n \equiv 2\;{\rm or}\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right. To get Theorem 4.8 simplify the terms in brackets and replace t by t + 1.

Applying Theorem 4.8 yields the following two corollaries.

Corollary 4.9.

If n is a positive integer, then k=1n1kkn+kn+knkF2kδ=0, \sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^k}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k - \delta }} = 0} , where δ=2,ifn1 or 4mod5,1,ifn2 or 3mod5. \delta = \left\{ {\matrix{ {2,} \hfill & {if\;n \equiv 1\;or\;4} \hfill & {\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {if\;n \equiv 2\;or\;3} \hfill & {\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.

Corollary 4.10.

If n is a positive integer and t is any integer, then we have:

If n ≡ 0 (mod 5), then k=0n1/21knk1kLn2k+t=2k=1n1k1kn+kn+knkL2k+t,k=0n1/21knk1kFn2k+t=2k=1n1k1kn+kn+knkF2k+t, \matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {\left( {n - 1} \right)/2} \right\rfloor }} {{{\left( { - 1} \right)}^k}\left( {\matrix{ {n - k - 1} \cr k \cr } } \right){L_{n - 2k + t}}} = 2\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{k - 1}}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){L_{2k + t}}} ,} \hfill \cr {\sum\limits_{k = 0}^{{\left\lfloor {\left( {n - 1} \right)/2} \right\rfloor }} {{{\left( { - 1} \right)}^k}\left( {\matrix{ {n - k - 1} \cr k \cr } } \right){F_{n - 2k + t}}} = 2\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{k - 1}}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k + t}}} ,} \hfill \cr }

if n ≡ 1 or 4 (mod 5), then k=0n1/21knk1kLn2k+t=2k=1n1k+1kn+kn+knkL2k1+t,k=0n1/21knk1kFn2k+t=2k=1n1k+1kn+kn+knkF2k1+t, \matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {\left( {n - 1} \right)/2} \right\rfloor }} {{{\left( { - 1} \right)}^k}\left( {\matrix{ {n - k - 1} \cr k \cr } } \right){L_{n - 2k + t}}} = 2\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{k + 1}}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){L_{2k - 1 + t}}} ,} \hfill \cr {\sum\limits_{k = 0}^{{\left\lfloor {\left( {n - 1} \right)/2} \right\rfloor }} {{{\left( { - 1} \right)}^k}\left( {\matrix{ {n - k - 1} \cr k \cr } } \right){F_{n - 2k + t}}} = 2\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^{k + 1}}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k - 1 + t}}} ,} \hfill \cr }

if n ≡ 2 or 3 (mod 5), then k=0n1/21knk1kLn2k+t=2k=1n1kkn+kn+knkL2k+1+t,k=0n1/21knk1kFn2k+t=2k=1n1kkn+kn+knkF2k+1+t. \matrix{ {\sum\limits_{k = 0}^{{\left\lfloor {\left( {n - 1} \right)/2} \right\rfloor }} {{{\left( { - 1} \right)}^k}\left( {\matrix{ {n - k - 1} \cr k \cr } } \right){L_{n - 2k + t}}} = 2\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^k}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){L_{2k + 1 + t}}} ,} \hfill \cr {\sum\limits_{k = 0}^{{\left\lfloor {\left( {n - 1} \right)/2} \right\rfloor }} {{{\left( { - 1} \right)}^k}\left( {\matrix{ {n - k - 1} \cr k \cr } } \right){F_{n - 2k + t}}} = 2\sum\limits_{k = 1}^n {{{\left( { - 1} \right)}^k}{k \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k + 1 + t}}} .} \hfill \cr }

Proof

Compare Theorem 4.8 with Theorem 2.7.

Lemma 4.11.

If n is a non-negative integer, then k=0n1nk4kn+knkcos2kx=sin2n+1xsinx. \sum\limits_{k = 0}^n {{{\left( { - 1} \right)}^{n - k}}{4^k}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){{\cos }^{2k}}x} = {{\sin \left( {\left( {2n + 1} \right)x} \right)} \over {\sin x}}.

Proof

Evaluate the identity [3] k=0n1nk4kn+knkx2k=U2nx \sum\limits_{k = 0}^n {{{\left( { - 1} \right)}^{n - k}}{4^k}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){x^{2k}}} = {U_{2n}}\left( x \right) at x = cos x.

Lemma 4.12.

If n is an integer, then sin2n+1π/5sinπ/5=1,ifn0mod5,α,ifn1mod5,0,ifn2mod5,α,ifn3mod5,1,ifn4mod5. {{\sin \left( {\left( {2n + 1} \right)\pi /5} \right)} \over {\sin \left( {\pi /5} \right)}} = \left\{ {\matrix{ {1,} \hfill & {if\;n \equiv 0} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr {\alpha ,} \hfill & {if\;n \equiv 1} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr {0,} \hfill & {if\;n \equiv 2} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr { - \alpha ,} \hfill & {if\;n \equiv 3} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr { - 1,} \hfill & {if\;n \equiv 4} \hfill & {\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.

From Lemmas 4.11 and 4.12 we can deduce the following Fibonacci and Lucas binomial identities modulo 5.

Theorem 4.13.

If n is a non-negative integer and t is any integer, then k=0n1nkn+knkL2k+t=Lt,ifn0 mod5,Lt+1,ifn1mod5,0,ifn2mod5,Lt+1,ifn3 mod5,Lt,ifn4 mod5,k=0n1nkn+knkF2k+t=Ft,ifn0mod5,Ft+1,ifn1mod5,0,ifn2 mod5,Ft+1,ifn3 mod5,Ft,ifn4mod5. \matrix{ {\sum\limits_{k = 0}^n {{{\left( { - 1} \right)}^{n - k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){L_{2k + t}}} = \left\{ {\matrix{ {{L_t},} \hfill & {if\;n \equiv 0\;} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{t + 1}},} \hfill & {if\;n \equiv 1} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr {0,} \hfill & {if\;n \equiv 2} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr { - {L_{t + 1}},} \hfill & {if\;n \equiv 3\;} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr { - {L_t},} \hfill & {if\;n \equiv 4\;} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 0}^n {{{\left( { - 1} \right)}^{n - k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){F_{2k + t}}} = \left\{ {\matrix{ {{F_t},} \hfill & {if\;n \equiv 0} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_{t + 1}},} \hfill & {if\;n \equiv 1} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr {0,} \hfill & {if\;n \equiv 2\;} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr { - {F_{t + 1}},} \hfill & {if\;n \equiv 3\;} \hfill & {\left( {{\rm mod }\;5} \right),} \hfill \cr { - {F_t},} \hfill & {if\;n \equiv 4} \hfill & {\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }

Proof

Set x = π/5 in (4.8) and use Lemma 4.12.

Lemma 4.14 ([10, (41.2.16.1)]).

If n is a positive integer and x is any variable, then k=1n(1)kcosxcosπk/n=1211cosx+(1)n1+cosxnsinxsinnx. \sum\limits_{k = 1}^n {{{{{( - 1)}^k}} \over {\cos x - \cos \left( {\pi k/n} \right)}}} = {1 \over 2}\left( {{1 \over {1 - \cos x}} + {{{{( - 1)}^n}} \over {1 + \cos x}}} \right) - {n \over {\sin x\sin nx}}.

Further interesting identities involving Fibonacci and Lucas numbers are stated in the next theorem.

Theorem 4.15.

If n is a positive integer and t is any integer, then k=1n(1)k1Lt1+2Ltcosπk/n4cos2πk/n2cosπk/n1=12(Lt+2+1)nFt121n/5n.0,if n0mod5,Ft+1,if n1 or 4 mod5 ,Ft,if n2 or 3mod5 ,k=1n(1)k1Ft1+2Ftcosπk/n4cos2πk/n2cosπk/n1=12Ft+2+(1)n5Lt12(1)n/55n0,if n0mod5,Lt+1,if n1 or 4mod5 ,Lt,if n2 or 3mod5 . \matrix{ {\sum\limits_{k = 1}^n {{{{{( - 1)}^{k - 1}}\left( {{L_{t - 1}} + 2{L_t}\cos \left( {\pi k/n} \right)} \right)} \over {4\,{{\cos }^2}\left( {\pi k/n} \right) - 2\cos \left( {\pi k/n} \right) - 1}}} } \hfill \cr {\; = {1 \over 2}({L_{t + 2}} + \left( { - 1{)^n}{F_{t - 1}}} \right) - 2{{\left( { - 1} \right)}^{\left\lfloor {n/5} \right\rfloor }}n.\left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_{t + 1}},} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{F_t},} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 1}^n {{{{{( - 1)}^{k - 1}}\left( {{F_{t - 1}} + 2{F_t}\cos \left( {\pi k/n} \right)} \right)} \over {4\,{{\cos }^2}\left( {\pi k/n} \right) - 2\cos \left( {\pi k/n} \right) - 1}}} } \hfill \cr {\; = {1 \over 2}\left( {{F_{t + 2}} + {{{{( - 1)}^n}} \over 5}{L_{t - 1}}} \right) - {{2{{( - 1)}^{\left\lfloor {n/5} \right\rfloor }}} \over 5}n \cdot \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_{t + 1}},} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{L_t},} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }

Proof

Set x = π/5 and x = 3π/5, in turn, in (4.9) to obtain 2k=1n(1)kα2cosπk/n=12α+(1)n2+α4nα5sinπ/5sinnπ/5 2\sum\limits_{k = 1}^n {{{{{( - 1)}^k}} \over {\alpha - 2\cos \left( {\pi k/n} \right)}}} = {1 \over {2 - \alpha }} + {{{{( - 1)}^n}} \over {2 + \alpha }} - {{4n\alpha } \over {\sqrt 5 }}{{\sin \left( {\pi /5} \right)} \over {\sin \left( {n\pi /5} \right)}} and 2k=1n(1)kβ2cosπk/n =12β+(1)n2+β+4nβ5sin3π/5sin3nπ/5, 2\sum\limits_{k = 1}^n {{{{{( - 1)}^k}} \over {\beta - 2\cos \left( {\pi k/n} \right)}}} \; = {1 \over {2 - \beta }} + {{{{( - 1)}^n}} \over {2 + \beta }} + {{4n\beta } \over {\sqrt 5 }}{{\sin \left( {3\pi /5} \right)} \over {\sin \left( {3n\pi /5} \right)}}, from which the identities follow.

By setting t = 0 and t = 1 in Theorem 4.15, we obtain the following.

Corollary 4.16.

If n is a positive integer, then k=1n(1)k14cosπk/n14cos2πk/n2cosπk/n1=3+(1)n221n/5n0,ifn0,2 or 3 mod 5,1,otherwise,k=1n(1)k14cos2πk/n2cosπk/n1=5(1)n102(1)n/55n0,if n0 mod 5 ,1,if n1 or 4 mod 5 ,2,if n2 or 3 mod 5 ,k=1n(1)k1cos2πk/2n4cos2πk/n2cosπk/n1=12(1)n/52n0,if n0 mod 5 ,1,otherwise,k=1n(1)k1cosπk/n4cos2πk/n2cosπk/n1=5+(1)n10(1)n/55n0,if n0 mod 5,3,if n1 or 4 mod 5,1,if n2 or 3 mod 5. \matrix{ {\sum\limits_{k = 1}^n {{{{{( - 1)}^{k - 1}}\left( {4\cos \left( {\pi k/n} \right) - 1} \right)} \over {4{{\cos }^2}\left( {\pi k/n} \right) - 2\cos \left( {\pi k/n} \right) - 1}}} = {{3 + {{( - 1)}^n}} \over 2} - 2{{\left( { - 1} \right)}^{\left\lfloor {n/5} \right\rfloor }}n \cdot \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0,2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {otherwise,} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 1}^n {{{{{( - 1)}^{k - 1}}} \over {4{{\cos }^2}\left( {\pi k/n} \right) - 2\cos \left( {\pi k/n} \right) - 1}}} = {{5 - {{( - 1)}^n}} \over {10}} - {{2{{( - 1)}^{\left\lfloor {n/5} \right\rfloor }}} \over 5}n \cdot \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {2,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 1}^n {{{{{( - 1)}^{k - 1}}{{\cos }^2}\left( {\pi k/2n} \right)} \over {4{{\cos }^2}\left( {\pi k/n} \right) - 2\cos \left( {\pi k/n} \right) - 1}}} = {1 \over 2} - {{{{( - 1)}^{\left\lfloor {n/5} \right\rfloor }}} \over 2}n \cdot \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {otherwise,} \hfill \cr } } \right.} \hfill \cr {\sum\limits_{k = 1}^n {{{{{( - 1)}^{k - 1}}\cos \left( {\pi k/n} \right)} \over {4{{\cos }^2}\left( {\pi k/n} \right) - 2\cos \left( {\pi k/n} \right) - 1}}} = {{5 + {{( - 1)}^n}} \over {10}} - {{{{( - 1)}^{\left\lfloor {n/5} \right\rfloor }}} \over 5}n \cdot \left\{ {\matrix{ {0,} \hfill & {if\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {3,} \hfill & {if\;n \equiv 1\;or\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {1,} \hfill & {if\;n \equiv 2\;or\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }

Some additional observations

We close this paper with some additional observations leading to possibly new series representations of the constant α involving Bernoulli polynomials. Recall that Bernoulli polynomials Bn(t), n ≥ 0, may be defined by the Bnt=k=0nnkBnktk, {B_n}\left( t \right) = \sum\limits_{k = 0}^n {\left( {\matrix{ n \cr k \cr } } \right){B_{n - k}}{t^k}} , where Bn is the nth Bernoulli number, defined by the power series zez1=n=0Bnznn!,z<2π. {z \over {{e^z} - 1}} = \sum\limits_{n = 0}^\infty {{B_n}{{{z^n}} \over {n!}}} ,\;\;\;\;\left| z \right| < 2\pi . We have Bn(1) = Bn(0) = Bn for all n ≥ 2 and B2n+1 = 0 for all n ≥ 1.

Theorem 5.1.

Let m be a non-negative integer. Then k=01k22k+12k+1!π2k25kB2k+15m2=1m1,k=01k22k2k+1!π2k25kB2k+15m2+12=0,k=01k22k+12k+1!π2k25kB2k+15m2+1=1m,k=01k22k+12k+1!π2k25kB2k+15m2+32=1mα, \matrix{ {\sum\limits_{k = 0}^\infty {{{\left( { - 1} \right)}^k}{{{2^{2k + 1}}} \over {\left( {2k + 1} \right)!}}{{{\pi ^{2k}}} \over {{{25}^k}}}{B_{2k + 1}}\left( {{{5m} \over 2}} \right)} = {{\left( { - 1} \right)}^{m - 1}},} \hfill \cr {\sum\limits_{k = 0}^\infty {{{\left( { - 1} \right)}^k}{{{2^{2k}}} \over {\left( {2k + 1} \right)!}}{{{\pi ^{2k}}} \over {{{25}^k}}}{B_{2k + 1}}\left( {{{5m} \over 2} + {1 \over 2}} \right)} = 0,} \hfill \cr {\sum\limits_{k = 0}^\infty {{{\left( { - 1} \right)}^k}{{{2^{2k + 1}}} \over {\left( {2k + 1} \right)!}}{{{\pi ^{2k}}} \over {{{25}^k}}}{B_{2k + 1}}\left( {{{5m} \over 2} + 1} \right)} = {{\left( { - 1} \right)}^m},} \hfill \cr {\sum\limits_{k = 0}^\infty {{{\left( { - 1} \right)}^k}{{{2^{2k + 1}}} \over {\left( {2k + 1} \right)!}}{{{\pi ^{2k}}} \over {{{25}^k}}}{B_{2k + 1}}\left( {{{5m} \over 2} + {3 \over 2}} \right)} = {{\left( { - 1} \right)}^m}\alpha ,} \hfill \cr } and k=01k22k+12k+1!π2k25kB2k+15m2+2=1mα. \sum\limits_{k = 0}^\infty {{{\left( { - 1} \right)}^k}{{{2^{2k + 1}}} \over {\left( {2k + 1} \right)!}}{{{\pi ^{2k}}} \over {{{25}^k}}}{B_{2k + 1}}\left( {{{5m} \over 2} + 2} \right)} = {\left( { - 1} \right)^m}\alpha .

Proof

Combine (2.6) with the representation [13, Eq. (2.5)] sinxtsint=k=01k22k+12k+1!B2k+11+x2t2k,t<π.  {{\sin xt} \over {\sin t}} = \sum\limits_{k = 0}^\infty {{{\left( { - 1} \right)}^k}{{{2^{2k + 1}}} \over {\left( {2k + 1} \right)!}}{B_{2k + 1}}\left( {{{1 + x} \over 2}} \right){t^{2k}}} ,\;\;\;\;\left| t \right| < \pi .\;

When m = 0 then from (5.1) and (5.2) we get the special series: k=01k22k+12k+1!π2k25kB2k+132=α,k=01k22k+12k+1!π2k25kB2k+12=α. \matrix{ {\sum\limits_{k = 0}^\infty {{{\left( { - 1} \right)}^k}{{{2^{2k + 1}}} \over {\left( {2k + 1} \right)!}}{{{\pi ^{2k}}} \over {{{25}^k}}}{B_{2k + 1}}\left( {{3 \over 2}} \right)} = \alpha ,} \hfill \cr {\sum\limits_{k = 0}^\infty {{{\left( { - 1} \right)}^k}{{{2^{2k + 1}}} \over {\left( {2k + 1} \right)!}}{{{\pi ^{2k}}} \over {{{25}^k}}}{B_{2k + 1}}\left( 2 \right)} = \alpha .} \hfill \cr }

From Raabe’s formula Bnax=an1k=0a1Bnx+ka {B_n}\left( {ax} \right) = {a^{n - 1}}\sum\limits_{k = 0}^{a - 1} {{B_n}} \left( {x + {k \over a}} \right) we get B2k+12=22kB2k+11+B2k+132 {B_{2k + 1}}\left( 2 \right) = {2^{2k}}\left( {{B_{2k + 1}}\left( 1 \right) + {B_{2k + 1}}\left( {{3 \over 2}} \right)} \right) and k=0(1)k22k+12k+1!π2k25kB2k+132=α,k=01k24k+12k+1!π2k25kB2k+132=α3=5β. \matrix{ {\sum\limits_{k = 0}^\infty {{{( - 1)}^k}{{{2^{2k + 1}}} \over {\left( {2k + 1} \right)!}}{{{\pi ^{2k}}} \over {{{25}^k}}}{B_{2k + 1}}\left( {{3 \over 2}} \right)} = \alpha ,} \cr {\sum\limits_{k = 0}^\infty {{{\left( { - 1} \right)}^k}{{{2^{4k + 1}}} \over {\left( {2k + 1} \right)!}}{{{\pi ^{2k}}} \over {{{25}^k}}}{B_{2k + 1}}\left( {{3 \over 2}} \right)} = \alpha - 3 = \sqrt 5 \beta .} \cr } But making use of Bn(t + 1) − Bn(t) = ntn−1 we see that B2k+132=2k+122k {B_{2k + 1}}\left( {{3 \over 2}} \right) = {{2k + 1} \over {{2^{2k}}}} and thus the series turn into k=1(1)k2k!π2k25k=α21=β22 \sum\limits_{k = 1}^\infty {{{{{( - 1)}^k}} \over {\left( {2k} \right)!}}{{{\pi ^{2k}}} \over {{{25}^k}}}} = {\alpha \over 2} - 1 = - {{{\beta ^2}} \over 2} and k=1(1)k22k+12k!π2k25k=5β. \sum\limits_{k = 1}^\infty {{{( - 1)}^k}{{{2^{2k + 1}}} \over {\left( {2k} \right)!}}{{{\pi ^{2k}}} \over {{{25}^k}}}} = \sqrt 5 \beta . The series (5.4) and (5.5) are essentially cosh(/5) = cos(π/5) = α/2 and cosh(2/5) = cos(2π/5) = −β/2 which we encountered at the beginning of the paper.

Combining (2.7) with (5.3) we have the following theorem. The details of we leave to the reader.

Theorem 5.2.

Let m be a non-negative integer. Then k=0(1)k22k+12k+1!9kπ2k25kB2k+15m2=(1)m1,k=01k22k2k+1!9kπ2k25kB2k+15m2+12=0,k=01k22k+12k+1!9kπ2k25kB2k+15m2+1=1m,k=01k22k+12k+1!9kπ2k25kB2k+15m2+32=1mβ, \matrix{ {\sum\limits_{k = 0}^\infty {{{( - 1)}^k}{{{2^{2k + 1}}} \over {\left( {2k + 1} \right)!}}{{{9^k}{\pi ^{2k}}} \over {{{25}^k}}}{B_{2k + 1}}\left( {{{5m} \over 2}} \right)} = {{( - 1)}^{m - 1}},} \hfill \cr {\sum\limits_{k = 0}^\infty {{{\left( { - 1} \right)}^k}{{{2^{2k}}} \over {\left( {2k + 1} \right)!}}{{{9^k}{\pi ^{2k}}} \over {{{25}^k}}}{B_{2k + 1}}\left( {{{5m} \over 2} + {1 \over 2}} \right)} = 0,} \hfill \cr {\sum\limits_{k = 0}^\infty {{{\left( { - 1} \right)}^k}{{{2^{2k + 1}}} \over {\left( {2k + 1} \right)!}}{{{9^k}{\pi ^{2k}}} \over {{{25}^k}}}{B_{2k + 1}}\left( {{{5m} \over 2} + 1} \right)} = {{\left( { - 1} \right)}^m},} \hfill \cr {\sum\limits_{k = 0}^\infty {{{\left( { - 1} \right)}^k}{{{2^{2k + 1}}} \over {\left( {2k + 1} \right)!}}{{{9^k}{\pi ^{2k}}} \over {{{25}^k}}}{B_{2k + 1}}\left( {{{5m} \over 2} + {3 \over 2}} \right)} = {{\left( { - 1} \right)}^m}\beta ,} \hfill \cr } and k=01k22k+12k+1!9kπ2k25kB2k+15m2+2=1mβ. \sum\limits_{k = 0}^\infty {{{\left( { - 1} \right)}^k}{{{2^{2k + 1}}} \over {\left( {2k + 1} \right)!}}{{{9^k}{\pi ^{2k}}} \over {{{25}^k}}}{B_{2k + 1}}\left( {{{5m} \over 2} + 2} \right)} = {\left( { - 1} \right)^m}\beta .

Finally, we obtain the following special series as a consequence of (5.6) and (5.7): k=01k22k+12k+1!9kπ2k25kB2k+132=β,k=01k22k+12k+1!9kπ2k25kB2k+12=β. \matrix{ {\sum\limits_{k = 0}^\infty {{{\left( { - 1} \right)}^k}{{{2^{2k + 1}}} \over {\left( {2k + 1} \right)!}}{{{9^k}{\pi ^{2k}}} \over {{{25}^k}}}{B_{2k + 1}}\left( {{3 \over 2}} \right)} = \beta ,} \hfill \cr {\sum\limits_{k = 0}^\infty {{{\left( { - 1} \right)}^k}{{{2^{2k + 1}}} \over {\left( {2k + 1} \right)!}}{{{9^k}{\pi ^{2k}}} \over {{{25}^k}}}{B_{2k + 1}}\left( 2 \right)} = \beta .} \hfill \cr }

Concluding comments

In this paper, we presented new closed forms for some types of finite Fibonacci and Lucas sums involving different kinds of binomial coefficients and depending on the modulo 5 nature of the upper summation limit. To prove our results, we applied some trigonometric identities utilizing Waring formulas and Chebyshev polynomials of the first and second kinds.

Using similar techniques, we can generalize our findings to more common number sequences. Let us give, for example, a generalization of Theorems 2.3, 3.3 and 4.5 to the case of the gibonacci (generalized Fibonacci) sequence defined by the recurrence Gn = Gn−1 +Gn−2, n ≥ 2, with G0 = a and G1 = b, where a and b are arbitrary [12, 18]. Note that Fn corresponds to the case of Gn when a = 1 and b = 0, while Ln to the case when a = 1 and b = 2. The following identities modulo 5 hold for positive integer n and any integer t: nk=1n/2(1)k1knk1k1Gn2k+t=Gn+t(1)n2Gt,ifn0mod5,Gn+t+(1)nGt+1,ifn1 or 4mod5,Gn+t(1)nGt1,ifn2 or 3mod5,nk=0n/2(1)nknknkkGn2k+t=2Gt,ifn0mod5,Gt+1,ifn1 or 4mod5,Gt1,ifn2 or 3mod5,nk=0n(1)nkn+kn+knkG2k+t=Gt,ifn=0mod5,Gt1/2,ifn=1 or 4mod5,Gt+1/2,ifn=2 or 3mod5. \matrix{ {n\sum\limits_{k = 1}^{{\left\lfloor {n/2} \right\rfloor }} {{{{{( - 1)}^{k - 1}}} \over k}\left( {\matrix{ {n - k - 1} \cr {k - 1} \cr } } \right){G_{n - 2k + t}}} = \left\{ {\matrix{ {{G_{n + t}} - {{( - 1)}^n}2{G_t},} \hfill & {{\rm{if}}\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{G_{n + t}} + {{( - 1)}^n}{G_{t + 1}},} \hfill & {{\rm{if}}\;n \equiv 1\;{\rm{or}}\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{G_{n + t}} - {{( - 1)}^n}{G_{t - 1}},} \hfill & {{\rm{if}}\;n \equiv 2\;{\rm{or}}\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {n\sum\limits_{k = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{{{{( - 1)}^{n - k}}} \over {n - k}}\left( {\matrix{ {n - k} \cr k \cr } } \right){G_{n - 2k + t}}} = \left\{ {\matrix{ {2{G_t},} \hfill & {{\rm{if}}\;n \equiv 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {G_{t + 1}},} \hfill & {{\rm{if}}\;n \equiv 1\;{\rm{or}}\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{G_{t - 1}},} \hfill & {{\rm{if}}\;n \equiv 2\;{\rm{or}}\;3\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr } } \right.} \hfill \cr {n\sum\limits_{k = 0}^n {{{{{( - 1)}^{n - k}}} \over {n + k}}\left( {\matrix{ {n + k} \cr {n - k} \cr } } \right){G_{2k + t}}} = \left\{ {\matrix{ {{G_t},} \hfill & {{\rm{if}}\;n = 0\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr {{G_{t - 1}}/2,} \hfill & {{\rm{if}}\;n = 1\;{\rm{or}}\;4\;\;\;\;\left( {{\rm mod }\;5} \right),} \hfill \cr { - {G_{t + 1}}/2,} \hfill & {{\rm{if}}\;n = 2\;{\rm{or}}\;3\;\;\;\;\left( {{\rm mod }\;5} \right).} \hfill \cr } } \right.} \hfill \cr }

Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Matematica, Matematica generale