Accesso libero

The Cosine-Sine Functional Equation on Semigroups

  
05 ott 2021
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

The primary object of study is the “cosine-sine” functional equation f(xy) = f(x)g(y)+g(x)f(y)+h(x)h(y) for unknown functions f, g, h : S → ℂ, where S is a semigroup. The name refers to the fact that it contains both the sine and cosine addition laws. This equation has been solved on groups and on semigroups generated by their squares. Here we find the solutions on a larger class of semigroups and discuss the obstacles to finding a general solution for all semigroups. Examples are given to illustrate both the results and the obstacles.

We also discuss the special case f(xy) = f(x)g(y) + g(x)f(y) − g(x)g(y) separately, since it has an independent direct solution on a general semigroup.

We give the continuous solutions on topological semigroups for both equations.

Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Matematica, Matematica generale