1. bookVolume 8 (2023): Edizione 1 (January 2023)
Dettagli della rivista
License
Formato
Rivista
eISSN
2444-8656
Prima pubblicazione
01 Jan 2016
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese
Accesso libero

Prediction and Analysis of ChiNext Stock Price Based on Linear and Non-linear Composite Model

Pubblicato online: 15 Jul 2022
Volume & Edizione: Volume 8 (2023) - Edizione 1 (January 2023)
Pagine: 689 - 696
Ricevuto: 07 Feb 2022
Accettato: 09 Apr 2022
Dettagli della rivista
License
Formato
Rivista
eISSN
2444-8656
Prima pubblicazione
01 Jan 2016
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese

Figure 1

GARCH model comprehensive modeling flow chart
GARCH model comprehensive modeling flow chart

Figure 2

The square of the residual plot
The square of the residual plot

Figure 3

Variance contribution graph of independent variables and principal components
Variance contribution graph of independent variables and principal components

Hong, H., Xu, S., & Lee, C. C. Investor herding in the China stock market: an examination of CHINEXT. Rom J Econ Forecast.,2020; 23(4): 47-61 Search in Google Scholar

Houssein, E. H., Dirar, M., Hussain, K., & Mohamed, W. M. Assess deep learning models for Egyptian exchange prediction using nonlinear artificial neural networks. Neural Computing and Applications.,2021; 33(11): 5965-5987 Search in Google Scholar

Mallikarjuna, M., & Rao, R. P. Evaluation of forecasting methods from selected stock market returns. Financial Innovation.,2019; 5(1): 1-16 Search in Google Scholar

Gururaj, V., Shriya, V. R., & Ashwini, K. Stock market prediction using linear regression and support vector machines. Int J Appl Eng Res.,2019; 14(8): 1931-1934 Search in Google Scholar

Hoque, M. E., & Zaidi, M. A. S. Global and country-specific geopolitical risk uncertainty and stock return of fragile emerging economies. Borsa Istanbul Review., 2020;20(3): 197-213 Search in Google Scholar

Uddin, M. A., Hoque, M. E., & Ali, M. H. International economic policy uncertainty and stock market returns of Bangladesh: evidence from linear and nonlinear model. Quantitative Finance and Economics., 2020;4(2): 236-251 Search in Google Scholar

Yuanyuan, C., Rui, W., Bin, Z. & Griffith, W. Temporal association rules discovery algorithm based on improved index tree. Applied Mathematics and Nonlinear Sciences.,2021; 6(1): 115-128 Search in Google Scholar

Shirakol, S., Kalyanshetti, M. & Hosamani, S. QSPR Analysis of certain Distance Based Topological Indices. Applied Mathematics and Nonlinear Sciences., 2019;4(2): 371-386 Search in Google Scholar

Adekoya, O. B. Persistence and efficiency of OECD stock markets: linear and nonlinear fractional integration approaches. Empirical Economics.,2021; 61(3): 1415-1433 Search in Google Scholar

Wu, W., Lee, C. C., Xing, W., & Ho, S. J. The impact of the COVID-19 outbreak on Chinese-listed tourism stocks. Financial Innovation.,2021; 7(1): 1-18 Search in Google Scholar

Senarathne, C. W. The information flow interpretation of margin debt value data: Evidence from New York Stock Exchange. Applied Economics Journal.,2019; 26(1): 45-70 Search in Google Scholar

Senarathne, C. W., & Jianguo, W. The relationship between human behavior and stock returns in efficient stock markets: the mood-effect under a cultural perspective. Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu.,2019; 63(2): 207-220 Search in Google Scholar

Pang, X., Zhou, Y., Wang, P., Lin, W., & Chang, V. An innovative neural network approach for stock market prediction. The Journal of Supercomputing.,2020; 76(3): 2098-2118 Search in Google Scholar

Nikou, M., Mansourfar, G., & Bagherzadeh, J. Stock price prediction using DEEP learning algorithm and its comparison with machine learning algorithms. Intelligent Systems in Accounting, Finance and Management.,2019; 26(4): 164-174 Search in Google Scholar

Articoli consigliati da Trend MD