Accesso libero

Autonomous learning and adaptation of industrial robots using intelligent control algorithms

  
09 ott 2024
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Dalla Libera, A., Castaman, N., Ghidoni, S., & Carli, R. (2020). Autonomous learning of the robot kinematic model. IEEE Transactions on Robotics, 37(3), 877-892. Search in Google Scholar

Alomari, M., Li, F., Hogg, D. C., & Cohn, A. G. (2022). Online perceptual learning and natural language acquisition for autonomous robots. Artificial Intelligence, 303, 103637. Search in Google Scholar

Wang, X., Wang, X., Wilkes, D. M., Wang, X., Wang, X., & Wilkes, D. M. (2020). Reinforcement Learning for Mobile Robot Perceptual Learning. Machine Learning-based Natural Scene Recognition for Mobile Robot Localization in An Unknown Environment, 253-273. Search in Google Scholar

Wang, J., Zhang, T., Ma, N., Li, Z., Ma, H., Meng, F., & Meng, M. Q. H. (2021). A survey of learning‐ based robot motion planning. IET Cyber‐Systems and Robotics, 3(4), 302-314. Search in Google Scholar

Dong, L., He, Z., Song, C., & Sun, C. (2023). A review of mobile robot motion planning methods: from classical motion planning workflows to reinforcement learning-based architectures. Journal of Systems Engineering and Electronics, 34(2), 439-459. Search in Google Scholar

Unhelkar, V. V., Li, S., & Shah, J. A. (2020, May). Semi-supervised learning of decision-making models for human-robot collaboration. In Conference on Robot Learning (pp. 192-203). PMLR. Search in Google Scholar

Amiri, S., Shirazi, M. S., & Zhang, S. (2020, April). Learning and reasoning for robot sequential decision making under uncertainty. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 03, pp. 2726-2733). Search in Google Scholar

Mukherjee, D., Gupta, K., Chang, L. H., & Najjaran, H. (2022). A survey of robot learning strategies for human-robot collaboration in industrial settings. Robotics and Computer-Integrated Manufacturing, 73, 102231. Search in Google Scholar

Kyrarini, M., Haseeb, M. A., Ristić-Durrant, D., & Gräser, A. (2019). Robot learning of industrial assembly task via human demonstrations. Autonomous Robots, 43, 239-257. Search in Google Scholar

Arents, J., & Greitans, M. (2022). Smart industrial robot control trends, challenges and opportunities within manufacturing. Applied Sciences, 12(2), 937. Search in Google Scholar

Liu, Y., Li, Z., Liu, H., & Kan, Z. (2020). Skill transfer learning for autonomous robots and human–robot cooperation: A survey. Robotics and Autonomous Systems, 128, 103515. Search in Google Scholar

Chen, X., & Guhl, J. (2018). Industrial robot control with object recognition based on deep learning. Procedia CIRP, 76, 149-154. Search in Google Scholar

MinSu Jo,Myungjin Chung,Kihyun Kim & Hyo Young Kim. (2024). Improving Path Accuracy and Vibration Character of Industrial Robot Arms with Iterative Learning Control Method. International Journal of Precision Engineering and Manufacturing(prepubulish),1-13. Search in Google Scholar

Wang Yong,Liu Yuting & Xu Fan. (2024). Adaptive iterative learning control of soft robot for beating heart tracking. Robotic Intelligence and Automation(3),488-497. Search in Google Scholar

Zhang Kai,Qing Lu,Liu Gai & Quan Li. (2024). Sensorless fuzzy control algorithm for permanent magnet synchronous motor based on particle swarm optimization parameter identification and harmonic extraction. Journal of Electromagnetic Waves and Applications(8),877-897. Search in Google Scholar

J. F. Wang,H. Xu,K. Wang,J. Xie,K.S. Yu,G.S. Ye... & X.R. Han. (2024). Performance analysis and PID control strategy optimization of the electronic expansion valve on the single-tube heat exchange experimental platform. Applied Thermal Engineering123532-. Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
1 volte all'anno
Argomenti della rivista:
Scienze biologiche, Scienze della vita, altro, Matematica, Matematica applicata, Matematica generale, Fisica, Fisica, altro