Accès libre

Autonomous learning and adaptation of industrial robots using intelligent control algorithms

  
09 oct. 2024
À propos de cet article

Citez
Télécharger la couverture

Dalla Libera, A., Castaman, N., Ghidoni, S., & Carli, R. (2020). Autonomous learning of the robot kinematic model. IEEE Transactions on Robotics, 37(3), 877-892. Search in Google Scholar

Alomari, M., Li, F., Hogg, D. C., & Cohn, A. G. (2022). Online perceptual learning and natural language acquisition for autonomous robots. Artificial Intelligence, 303, 103637. Search in Google Scholar

Wang, X., Wang, X., Wilkes, D. M., Wang, X., Wang, X., & Wilkes, D. M. (2020). Reinforcement Learning for Mobile Robot Perceptual Learning. Machine Learning-based Natural Scene Recognition for Mobile Robot Localization in An Unknown Environment, 253-273. Search in Google Scholar

Wang, J., Zhang, T., Ma, N., Li, Z., Ma, H., Meng, F., & Meng, M. Q. H. (2021). A survey of learning‐ based robot motion planning. IET Cyber‐Systems and Robotics, 3(4), 302-314. Search in Google Scholar

Dong, L., He, Z., Song, C., & Sun, C. (2023). A review of mobile robot motion planning methods: from classical motion planning workflows to reinforcement learning-based architectures. Journal of Systems Engineering and Electronics, 34(2), 439-459. Search in Google Scholar

Unhelkar, V. V., Li, S., & Shah, J. A. (2020, May). Semi-supervised learning of decision-making models for human-robot collaboration. In Conference on Robot Learning (pp. 192-203). PMLR. Search in Google Scholar

Amiri, S., Shirazi, M. S., & Zhang, S. (2020, April). Learning and reasoning for robot sequential decision making under uncertainty. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 03, pp. 2726-2733). Search in Google Scholar

Mukherjee, D., Gupta, K., Chang, L. H., & Najjaran, H. (2022). A survey of robot learning strategies for human-robot collaboration in industrial settings. Robotics and Computer-Integrated Manufacturing, 73, 102231. Search in Google Scholar

Kyrarini, M., Haseeb, M. A., Ristić-Durrant, D., & Gräser, A. (2019). Robot learning of industrial assembly task via human demonstrations. Autonomous Robots, 43, 239-257. Search in Google Scholar

Arents, J., & Greitans, M. (2022). Smart industrial robot control trends, challenges and opportunities within manufacturing. Applied Sciences, 12(2), 937. Search in Google Scholar

Liu, Y., Li, Z., Liu, H., & Kan, Z. (2020). Skill transfer learning for autonomous robots and human–robot cooperation: A survey. Robotics and Autonomous Systems, 128, 103515. Search in Google Scholar

Chen, X., & Guhl, J. (2018). Industrial robot control with object recognition based on deep learning. Procedia CIRP, 76, 149-154. Search in Google Scholar

MinSu Jo,Myungjin Chung,Kihyun Kim & Hyo Young Kim. (2024). Improving Path Accuracy and Vibration Character of Industrial Robot Arms with Iterative Learning Control Method. International Journal of Precision Engineering and Manufacturing(prepubulish),1-13. Search in Google Scholar

Wang Yong,Liu Yuting & Xu Fan. (2024). Adaptive iterative learning control of soft robot for beating heart tracking. Robotic Intelligence and Automation(3),488-497. Search in Google Scholar

Zhang Kai,Qing Lu,Liu Gai & Quan Li. (2024). Sensorless fuzzy control algorithm for permanent magnet synchronous motor based on particle swarm optimization parameter identification and harmonic extraction. Journal of Electromagnetic Waves and Applications(8),877-897. Search in Google Scholar

J. F. Wang,H. Xu,K. Wang,J. Xie,K.S. Yu,G.S. Ye... & X.R. Han. (2024). Performance analysis and PID control strategy optimization of the electronic expansion valve on the single-tube heat exchange experimental platform. Applied Thermal Engineering123532-. Search in Google Scholar