INFORMAZIONI SU QUESTO ARTICOLO

Cita

Rangachev A, Marinov GK, Mladenov M. The demographic and geographic impact of the COVID pandemic in Bulgaria and Eastern Europe in 2020. Sci Rep, 2022, 12(1), 6333. doi. org/10.1038/s41598-022-11420-4.Search in Google Scholar

Nikolova M, Todorova Y, Emilova R, et al. Induction of humoral and cellular immune responses to COVID-19 mRNA and vector vaccines: A prospective cohort study in Bulgarian healthcare workers. J Med Virol, 2022, 94(5), 2008-2018. doi. org/10.1002/jmv.27572.Search in Google Scholar

Mihaylova A, Lesichkova S, Baleva M, et al. Durability of humoral and cell-mediated immune response after SARS-CoV-2 mRNA vaccine administration. J Med Virol, 2023, 95(1), e28360. doi.org/10.1002/jmv.28360.Search in Google Scholar

Mulchandani R, Lyngdoh T, Kakkar AK. Deciphering the COVID-19 cytokine storm: Systematic review and meta-analysis. Eur J Clin Invest. 2021 Jan;51(1):e13429. doi: 10.1111/eci.13429.Search in Google Scholar

Yang L, Xie X, Tu Z. et al. The signal pathways and treatment of cytokine storm in COVID-19. Sig Transduct Target Ther, 2021, 6, 255. doi.org/10.1038/s41392-021-00679-0.Search in Google Scholar

Ferrara JL, Abhyankar S, Gilliland DG. Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1. Transpl Proceed. 1993 Feb;25(1 Pt 2):1216-1217. doi. org/10.1016/0952-7915(93)90139-J.Search in Google Scholar

Tisoncik JR, Korth MJ, Simmons CP, et al. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 2012 Mar;76(1):16-32. doi: 10.1128/MMBR.05015-11. doi.org/10.3390/microorganisms9102159.Search in Google Scholar

Centers for Disease Control and Prevention. Clinical Spectrum of SARS-CoV-2 Infection Last Updated: March 6, 2023.Search in Google Scholar

Channappanavar R, Fehr AR, Vijay R, et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microb. 2016;19(2):181-193. doi: 10.1016/j. chom.2016.01.007.Search in Google Scholar

Blanco-Melo D, Nilsson-Payant BE, Liu W-C, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036-1045.e9. doi: 10.1016/j. cell.2020.04.026.Search in Google Scholar

Luo, Xiao, Hua, et al. T cell immunobiology and cytokine storm of COVID-19. Scand J Immunol 93.3 (2021): e12989. doi: 10.1111/sji.12989.Search in Google Scholar

Coppock D, Zurlo CE, Meloni JM, et al. Interferon gamma release assay mitogen responses in COVID-19. Infect Dis Clin Pract, 2022, 30(1), p.e1085. doi: 10.1097/ IPC.0000000000001085.Search in Google Scholar

Gadotti AC, de Castro Deus M, Telles JP, et al. IFN-γ is an independent risk factor associated with mortality in patients with moderate and severe COVID-19 infection. Virus Res. 2020 Nov;289:198171. doi: 10.1016/j.virusres.2020.198171.Search in Google Scholar

Del Valle DM, Kim-Schulze S, Huang HH et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med, 2020, 26, 1636–1643. doi: 10.1038/s41591-020-1051-9.Search in Google Scholar

Zhang Z, Ai G, Chen L, et al. Associations of immunological features with COVID-19 severity: a systematic review and meta-analysis. BMC infectious diseases, 2021, 21, 1-9. doi: 10.1186/s12879-021-06457-1.Search in Google Scholar

Liu Y, Chen D, Hou J et al. An inter-correlated cytokine network identified at the center of cytokine storm predicted COVID-19 prognosis. Cytokine, 2021, 138, 155365. doi: 10.1016/j. cyto.2020.155365.Search in Google Scholar

Ghazavi A, Ganji A, Keshavarzian N et al. Cytokine profile and disease severity in patients with COVID-19. Cytokine, 2021, 137, 155323. doi: 10.1016/j.cyto.2020.155323.Search in Google Scholar

Bretscher PA. A strategy to improve the efficacy of vaccination against tuberculosis and leprosy. Immunol Today. 1992 Sep;13(9):342-5. doi: 10.1016/0167-5699(92)90168-7.Search in Google Scholar

Chang Y, Bai M, You Q. Associations between Serum Interleukins (IL-1β, IL-2, IL-4, IL-6, IL-8, and IL-10) and Disease Severity of COVID-19: A Systematic Review and Meta-Analysis. BioMed Res Int, 2022. doi: 10.1155/2022/2755246.Search in Google Scholar

Masso-Silva JA, Moshensky A, Lam MTY, et al. Increased Peripheral Blood Neutrophil Activation Phenotypes and Neutrophil Extracellular Trap Formation in Critically Ill Coronavirus Disease 2019 (COVID-19) Patients: A Case Series and Review of the Literature. Clin Infect Dis. 2022 Feb 11;74(3):479-489. doi: 10.1093/cid/ciab437.Search in Google Scholar

Kaiser R, Leunig A, Pekayvaz K, et al. Self-sustaining IL-8 loops drive a prothrombotic neutrophil phenotype in severe COVID-19. JCI Insight. 2021 Sep 22;6(18):e150862. doi: 10.1172/jci.insight.Search in Google Scholar

Borges L, Pithon-Curi TC, Curi R, Hatanaka E. COVID-19 and Neutrophils: The Relationship between Hyperinflammation and Neutrophil Extracellular Traps, Mediators of Inflammation, vol. 2020, Article ID 8829674, 7 pages, 2020. doi. org/10.1155/2020/8829674.Search in Google Scholar

Cheng OZ, Palaniyar N. NET balancing: a problem in inflammatory lung diseases. Frontiers Immunol, 2013, 4, 1. doi. org/10.3389/fimmu.2013.00001.Search in Google Scholar

Saitoh T, Komano J, Saitoh Y, et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe. 2012 Jul 19;12(1):109-16. doi: 10.1016/j.chom.2012.05.015.Search in Google Scholar

Lu L, Zhang H, Dauphars DJ, He YW. A potential role of interleukin 10 in COVID-19 pathogenesis. Trends in Immunology, 2021, 42(1), 3-5. doi: 10.1016/j.it.2020.10.012Search in Google Scholar

eISSN:
2719-5384
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Basic Medical Science, Immunology, Clinical Medicine, other