Cite

Rangachev A, Marinov GK, Mladenov M. The demographic and geographic impact of the COVID pandemic in Bulgaria and Eastern Europe in 2020. Sci Rep, 2022, 12(1), 6333. doi. org/10.1038/s41598-022-11420-4.Search in Google Scholar

Nikolova M, Todorova Y, Emilova R, et al. Induction of humoral and cellular immune responses to COVID-19 mRNA and vector vaccines: A prospective cohort study in Bulgarian healthcare workers. J Med Virol, 2022, 94(5), 2008-2018. doi. org/10.1002/jmv.27572.Search in Google Scholar

Mihaylova A, Lesichkova S, Baleva M, et al. Durability of humoral and cell-mediated immune response after SARS-CoV-2 mRNA vaccine administration. J Med Virol, 2023, 95(1), e28360. doi.org/10.1002/jmv.28360.Search in Google Scholar

Mulchandani R, Lyngdoh T, Kakkar AK. Deciphering the COVID-19 cytokine storm: Systematic review and meta-analysis. Eur J Clin Invest. 2021 Jan;51(1):e13429. doi: 10.1111/eci.13429.Search in Google Scholar

Yang L, Xie X, Tu Z. et al. The signal pathways and treatment of cytokine storm in COVID-19. Sig Transduct Target Ther, 2021, 6, 255. doi.org/10.1038/s41392-021-00679-0.Search in Google Scholar

Ferrara JL, Abhyankar S, Gilliland DG. Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1. Transpl Proceed. 1993 Feb;25(1 Pt 2):1216-1217. doi. org/10.1016/0952-7915(93)90139-J.Search in Google Scholar

Tisoncik JR, Korth MJ, Simmons CP, et al. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 2012 Mar;76(1):16-32. doi: 10.1128/MMBR.05015-11. doi.org/10.3390/microorganisms9102159.Search in Google Scholar

Centers for Disease Control and Prevention. Clinical Spectrum of SARS-CoV-2 Infection Last Updated: March 6, 2023.Search in Google Scholar

Channappanavar R, Fehr AR, Vijay R, et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microb. 2016;19(2):181-193. doi: 10.1016/j. chom.2016.01.007.Search in Google Scholar

Blanco-Melo D, Nilsson-Payant BE, Liu W-C, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036-1045.e9. doi: 10.1016/j. cell.2020.04.026.Search in Google Scholar

Luo, Xiao, Hua, et al. T cell immunobiology and cytokine storm of COVID-19. Scand J Immunol 93.3 (2021): e12989. doi: 10.1111/sji.12989.Search in Google Scholar

Coppock D, Zurlo CE, Meloni JM, et al. Interferon gamma release assay mitogen responses in COVID-19. Infect Dis Clin Pract, 2022, 30(1), p.e1085. doi: 10.1097/ IPC.0000000000001085.Search in Google Scholar

Gadotti AC, de Castro Deus M, Telles JP, et al. IFN-γ is an independent risk factor associated with mortality in patients with moderate and severe COVID-19 infection. Virus Res. 2020 Nov;289:198171. doi: 10.1016/j.virusres.2020.198171.Search in Google Scholar

Del Valle DM, Kim-Schulze S, Huang HH et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med, 2020, 26, 1636–1643. doi: 10.1038/s41591-020-1051-9.Search in Google Scholar

Zhang Z, Ai G, Chen L, et al. Associations of immunological features with COVID-19 severity: a systematic review and meta-analysis. BMC infectious diseases, 2021, 21, 1-9. doi: 10.1186/s12879-021-06457-1.Search in Google Scholar

Liu Y, Chen D, Hou J et al. An inter-correlated cytokine network identified at the center of cytokine storm predicted COVID-19 prognosis. Cytokine, 2021, 138, 155365. doi: 10.1016/j. cyto.2020.155365.Search in Google Scholar

Ghazavi A, Ganji A, Keshavarzian N et al. Cytokine profile and disease severity in patients with COVID-19. Cytokine, 2021, 137, 155323. doi: 10.1016/j.cyto.2020.155323.Search in Google Scholar

Bretscher PA. A strategy to improve the efficacy of vaccination against tuberculosis and leprosy. Immunol Today. 1992 Sep;13(9):342-5. doi: 10.1016/0167-5699(92)90168-7.Search in Google Scholar

Chang Y, Bai M, You Q. Associations between Serum Interleukins (IL-1β, IL-2, IL-4, IL-6, IL-8, and IL-10) and Disease Severity of COVID-19: A Systematic Review and Meta-Analysis. BioMed Res Int, 2022. doi: 10.1155/2022/2755246.Search in Google Scholar

Masso-Silva JA, Moshensky A, Lam MTY, et al. Increased Peripheral Blood Neutrophil Activation Phenotypes and Neutrophil Extracellular Trap Formation in Critically Ill Coronavirus Disease 2019 (COVID-19) Patients: A Case Series and Review of the Literature. Clin Infect Dis. 2022 Feb 11;74(3):479-489. doi: 10.1093/cid/ciab437.Search in Google Scholar

Kaiser R, Leunig A, Pekayvaz K, et al. Self-sustaining IL-8 loops drive a prothrombotic neutrophil phenotype in severe COVID-19. JCI Insight. 2021 Sep 22;6(18):e150862. doi: 10.1172/jci.insight.Search in Google Scholar

Borges L, Pithon-Curi TC, Curi R, Hatanaka E. COVID-19 and Neutrophils: The Relationship between Hyperinflammation and Neutrophil Extracellular Traps, Mediators of Inflammation, vol. 2020, Article ID 8829674, 7 pages, 2020. doi. org/10.1155/2020/8829674.Search in Google Scholar

Cheng OZ, Palaniyar N. NET balancing: a problem in inflammatory lung diseases. Frontiers Immunol, 2013, 4, 1. doi. org/10.3389/fimmu.2013.00001.Search in Google Scholar

Saitoh T, Komano J, Saitoh Y, et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe. 2012 Jul 19;12(1):109-16. doi: 10.1016/j.chom.2012.05.015.Search in Google Scholar

Lu L, Zhang H, Dauphars DJ, He YW. A potential role of interleukin 10 in COVID-19 pathogenesis. Trends in Immunology, 2021, 42(1), 3-5. doi: 10.1016/j.it.2020.10.012Search in Google Scholar

eISSN:
2719-5384
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, Immunology, Clinical Medicine, other