1. bookVolume 14 (2020): Edizione 4 (December 2020)
Dettagli della rivista
Formato
Rivista
eISSN
2300-5319
Prima pubblicazione
22 Jan 2014
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

Ideal Rectifier Bridge Converting the Harvested Energy of Vibrations Into Electric Energy to Power an MR Damper

Pubblicato online: 08 Mar 2021
Volume & Edizione: Volume 14 (2020) - Edizione 4 (December 2020)
Pagine: 198 - 205
Ricevuto: 03 Nov 2020
Accettato: 22 Jan 2020
Dettagli della rivista
Formato
Rivista
eISSN
2300-5319
Prima pubblicazione
22 Jan 2014
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

1. Balato M., Costanzo L., Vitelli M. (2017), Resonant electromagnetic vibration harvesters: Determination of the electric circuit parameters and simplified closed-form analysis for the identification of the optimal diode bridge rectifier DC load. International Journal of Electrical Power and Energy Systems 84, 111-123.10.1016/j.ijepes.2016.05.004 Search in Google Scholar

2. Chytil J. (2014), Practical realization of ideal diode full-wave rectifiers, Informatics Control Measurement in Economy and Environment Protection, vol.4, no.4, 81-84. Search in Google Scholar

3. Grzybek D., Micek P. (2017), Piezoelectric beam generator based on MFC as a self-powered vibration sensor, Sensors and Actuators A: Physical, 267, 417-423.10.1016/j.sna.2017.10.053 Search in Google Scholar

4. Jastrzębski Ł., Sapinski B. (2017), Electrical interface for an MR damper-based vibration reduction system with energy harvesting capability. Proceedings of 18th International Carpathian Control Conference ICCC 2017.10.1109/CarpathianCC.2017.7970395 Search in Google Scholar

5. Maiorca F., Giusa F., Trigona C., Ando B., Bulsara A. R., Baglio S. (2013), Diode-less mechanical H-bridge rectifier for “zero threshold” vibration energy harvesters, Sensors and Actuators A: Physical, 201, 246-253.10.1016/j.sna.2013.07.021 Search in Google Scholar

6. Safaei M., Sodano H. A., Steven R Anton S. R. (2019), A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018), Smart Materials and Structures, 28, 113001.10.1088/1361-665X/ab36e4 Search in Google Scholar

7. Sapiński B. (2010), Vibration power generator for a linear MR damper, Smart Materials and Structures, 19, 105012.10.1088/0964-1726/19/10/105012 Search in Google Scholar

8. Sapiński B. (2011), Experimental study of a self-powered and sensing MR-damper-based vibration control system, Smart Materials and Structures, 20, 105007.10.1088/0964-1726/20/10/105007 Search in Google Scholar

9. Sapiński B. (2014), Energy-harvesting linear MR damper: prototyping and testing, Smart Materials and Structures, 23, 035021.10.1088/0964-1726/23/3/035021 Search in Google Scholar

10. Sapiński B., Jastrzębski Ł., Rosół M. (2012), Power amplifier supporting MR fluid-based actuators, Proceedings of 13th International Carpathian Control Conference ICCC 2012, 612–616.10.1109/CarpathianCC.2012.6228719 Search in Google Scholar

11. Sapiński B., Snamina J., Jastrzębski Ł., Staśkiewicz A. (2010), Laboratory stand for testing of self-powered vibration reduction systems, Journal of Theoretical and Applied Mechanics, Vol. 49, No. 4. Search in Google Scholar

12. Selevaraj K. (2019), Basics of Ideal Diodes, Texas Instruments, http://www.ti.com/lit/an/slvae57/slvae57.pdf Search in Google Scholar

13. Snamina J., Orkisz P. (2014), Energy Harvesting from Vibrations of a Two-Degree-of-Freedom Mechanical System, Acta Physica Polonica A, vol. 125, no. 4A, 174-178. Search in Google Scholar

14. Sung K. G., Choi S. B. (2008), Effect of an electromagnetically optimized magnetorheological damper on vehicle suspension control performance. Proc. of the Institution Mechanical Engineers Part D Journal of Automobile Engineering.10.1243/09544070JAUTO901 Search in Google Scholar

15. Wang D. H., Liao W. H. (2009a), Semi-active suspension systems for railway vehicles using magnetorheological dampers. Part I: System integration and modelling, Vehicle System Dynamics.10.1080/00423110802538328 Search in Google Scholar

16. Wang D. H., Liao W. H. (2009b), Semi-active suspension systems for railway vehicles using magnetorheological dampers. Part II: Simulation and analysis, Vehicle System Dynamics.10.1080/00423110802538336 Search in Google Scholar

17. Lord Corpotation (2020), MR damper, RD-8048-1, Technical documentation, www.lord.com Search in Google Scholar

18. KiCad EDA (2020), User manual, https://www.kicad-pcb.org/ Search in Google Scholar

19. Analog Devices (2020), LTSpice, User manual, https://www.analog.com/ Search in Google Scholar

20. Infineon (2020), IRFH5007, Technical documentation, https://www.infineon.com Search in Google Scholar

21. RHOM (2020), RBR2MM60C, Technical documentation, https://www.rohm.com/ Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo