1. bookVolume 14 (2020): Edizione 4 (December 2020)
Dettagli della rivista
Formato
Rivista
eISSN
2300-5319
Prima pubblicazione
22 Jan 2014
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

Robust LFT-LPV H∞ Control of an Underactuated Inverted Pendulum on a Cart with Optimal Weighting Functions Selection by GA and ES

Pubblicato online: 08 Mar 2021
Volume & Edizione: Volume 14 (2020) - Edizione 4 (December 2020)
Pagine: 186 - 197
Ricevuto: 23 Mar 2019
Accettato: 18 Jan 2021
Dettagli della rivista
Formato
Rivista
eISSN
2300-5319
Prima pubblicazione
22 Jan 2014
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

1. Abbas H.S., Tóth R., Petreczky M., Meskin N., and Mohammadpour J. (2014), Embedding of nonlinear systems in a Linear Parameter-Varying representation, In: Proc. of IFAC World Congress, Cape Town, South Africa, 6907–6913.10.3182/20140824-6-ZA-1003.02506 Search in Google Scholar

2. Abdou L., and Soltani F. (2005), OS-CFAR and CMLD threshold optimization with genetic algorithms, In: Proc. of 3rd International Conference on Systems, Signals & Devices, Vol III Communication and Signal Processing, Sousse, Tunisia. Search in Google Scholar

3. Abdou L., and Soltani F. (2008), OS-CFAR and CMLD threshold optimization in distributed systems using evolotionary strategies, Signal, Image and Video Processing, Vol. 2, No. 2, 155–167. Search in Google Scholar

4. Alcalá E., Puig V., Quevedo J., and Rosolia U. (2020), Autonomous racing using Linear Parameter Varying-Model Predictive Control (LPV-MPC), Control Engineering Practice, Vol. 95, 104270. Search in Google Scholar

5. Alfaro-Cid E., McGookin E.W., and Murray-Smith D.J. (2008), Optimisation of the weighting function of an H controller using genetic algorithms and structured genetic algorithms, International Journal of Systems Science, Vol. 39, No. 4, 335–347. Search in Google Scholar

6. Apkarian P., and Gahinet P. (1995), A convex characterization of gain-scheduled H controller, IEEE Transactions on Automatic Control, Vol. 40, No. 7, 853–864. Search in Google Scholar

7. Beaven R.W., Wright M.T., and Seaward D.R. (1996), Weighting function selection in the H design process, Control Engineering Practice, Vol. 4, No. 7, 625–633. Search in Google Scholar

8. Boubaker O. (2013), The inverted pendulum benchmark in nonlinear control theory: A survey, International Journal of Advanced Robotic Systems, Vol. 10, No. 5, 233–241. Search in Google Scholar

9. Briat C. (2015), Linear Parameter-Varying and Time-Delay Systems: Analysis, Observation, Filtering & Control, Springer-Verlag, Heidelberg.10.1007/978-3-662-44050-6 Search in Google Scholar

10. Choukchou-Braham A., Cherki B., Djemaï M., and Busawon K. (2014a), Classification of Underactuated Mechanical Systems, In: Choukchou-Braham A., Cherki B., Djemaï M., and Busawon K. (eds.), Analysis and Control of Underactuated Mechanical Systems, Springer, London, 35–54.10.1007/978-3-319-02636-7_4 Search in Google Scholar

11. Choukchou-Braham A., Cherki B., Djemaï M., and Busawon K. (2014b), Control Design Schemes for Underactuated Mechanical Systems, In: Choukchou-Braham A., Cherki B., Djemaï M., and Busawon K. (eds.), Analysis and Control of Underactuated Mechanical Systems, Springer-Verlag, London, 55–91.10.1007/978-3-319-02636-7_5 Search in Google Scholar

12. Do A.L., Sename O., Dugard L., and Soualmi B. (2011), Multi-objective optimization by genetic algorithms in H/LPV control of semi-active suspension, In: Proc. of IFAC World Congress, Milano, Italy, 7162–7167. Search in Google Scholar

13. El-Bardini M., and El-Nagar A.M. (2014), Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system, ISA Transactions, Vol. 53, 732–743. Search in Google Scholar

14. Fiacchini M., Viguria A., Cano R., Prieto A., Rubio F.R., Aracil J., and Canudas-de-Wit C. (2006), Design and experimentation of a personal pendulum vehicle, In: Proc. of Portuguese Conference on Automatic Control, Lisbona, Portugal. Search in Google Scholar

15. Hansen N., Arnold D.V., and Auger A. (2015), Evolution Strategies, In: Kacprzyk J., and Pedrycz W. (eds.), Springer Handbook of Computational Intelligence, Springer, Heidelberg, 871–898.10.1007/978-3-662-43505-2_44 Search in Google Scholar

16. Hasseni S., and Abdou L. (2017), Robust LPV control applied to a personal pendulum vehicle, In: Proc. of International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, Monastir, Tunisia, 6–11.10.1109/STA.2017.8314871 Search in Google Scholar

17. Hasseni S., and Abdou L. (2018), Integral backstepping/LFT-LPV H control for the trajectory tracking of a quadcopter, In: Proc. of International Conference on Systems and Control, Valencia, Spain, 348–353. Search in Google Scholar

18. Hasseni S., and Abdou L. (2020), Robust LPV control for attitude stabilization of a quadrotor helicopter under input saturations, Advances in Technology Innovation, Vol. 5, No. 2, 98–111. Search in Google Scholar

19. Hjartarson A., Seiler P., and Packard A. (2015), LPV Tools: a toolbox for modeling, analysis and synthesis of parameter varying control systems, IFAC PapersOnLine, Vol. 48, No. 26, 136–145. Search in Google Scholar

20. Holland J.H. (1992), Adaptation in Natural and Artificial Systems, MIT Press, MA, USA.10.7551/mitpress/1090.001.0001 Search in Google Scholar

21. Hu J., Bohn C., and Wu H.R. (2000), Systematic H weighting function selection and its application to the real-time control of a vertical take-off aircraft, Control Engineering Practice, Vol. 8, No. 3, 241–252. Search in Google Scholar

22. Iwasaki T., and Shibata G. (2001), LPV system analysis via quadratic separator for uncertain implicit system. IEEE Transactions on Automatic Control, Vol. 46, No. 10, 1195–1208. Search in Google Scholar

23. Li S., Jiang S., and Pan F. (2019), Event-triggered fault detection for networked LPV systems, Circuits, Systems, and Signal Processing, Vol. 38, No. 7, 2992–3019. Search in Google Scholar

24. Liu T.J., Du X., Sun X.M., Richter H., and Zhu F. (2019), Robust tracking control of aero-engine rotor speed based on switched LPV model, Aerospace Science and Technology, Vol. 91, 382–390. Search in Google Scholar

25. Liu Z., Theilliol D., Gu F., He Y., Yang L., and Han J. (2017), State feedback controller design for affine parameter-dependent LPV systems, IFAC PapersOnLine, Vol. 50, No. 1, 9760–9765. Search in Google Scholar

26. López-Estrada F.R., Ponsart J.C., Theilliol D., Zhang Y., and Astorga-Zaragoza C.M. (2016), LPV model-based tracking control and robust sensor fault diagnosis for a quadrotor UAV, Journal of Intelligent & Robotic Systems, Vol. 84, 163–177. Search in Google Scholar

27. Nguyen A.T., Chevrel P., and Claveau F. (2020), LPV static output feedback for constrained direct tilt control of narrow tilting vehicles, IEEE Transactions on Control Systems Technology, Vol. 28, No. 2, 661–670. Search in Google Scholar

28. Ohhira T., and Shimada A. (2017), Model predictive control for an Inverted pendulum robot with time-varying, IFAC PapersOnLine, Vol. 50, No. 1, 776–781. Search in Google Scholar

29. Packard A. (1994), Gain scheduling via linear fractional transformations, Systems and Control Letters, Vol. 22, No. 2, 79-92. Search in Google Scholar

30. Park M.S., and Chwa D. (2009), Swing-up and stabilization control of inverted-pendulum systems via coupled sliding-mode control method, IEEE Transactions on Industrial Electronics, Vol. 56, No. 9, 3541–3555. Search in Google Scholar

31. Prasad L.B., Tyagi B., and Gupta H.O. (2014), Optimal control of nonlinear inverted pendulum system using PID controller and LQR: Performance analysis without and with disturbance input, International Journal of Automation and Computing, Vol. 11, No. 6, 661–670. Search in Google Scholar

32. Raffo G.V., Ortega M.G., and Rubio F.R. (2007), Nonlinear H Control Applied to the Personal Pendulum Car, In: Proc. of European Control Conference, Kos, Greece, 2065–2070. Search in Google Scholar

33. Rechenberg I. (1973), Evolutionstrategie: Optimieruna Technischer Systeme nach Prinzipien der Biologischen Evolution, Frommann-Holzboog-Verlag, Stuttgart, Germany. Search in Google Scholar

34. Robert D., Sename O., and Simon D. (2010), An H LPV design for sampling varying controllers: experimentation with a T-inverted pendulum, IEEE Transactions on Control Systems Technology, Vol. 18, No. 3, 741–749. Search in Google Scholar

35. Rotondo D., Cristofaro A., Johansen T.A., Nejjari F., and Puig V. (2018), Diagnosis of icing and actuator faults in UAVs using LPV unknown input observers, Journal of Intelligent & Robotic Systems, Vol. 91, No. 3–4, 651–665. Search in Google Scholar

36. Rudra S., Barai R.K., and Maitra M. (2017), Block Backstepping Control of the Underactuated Mechanical Systems, In: Rudra S., Barai R.K., and Maitra M. (eds.), Block Backstepping Design of Nonlinear State Feedback Control Law for Underactuated Mechanical Systems, Springer-Verlag, Singapore, 31–52.10.1007/978-981-10-1956-2_3 Search in Google Scholar

37. Salhi S., Aouani N., and Salhi S. (2015), LPV affine modeling, analysis and simulation of DFIG based wind energy conversion system, In: Proc. of International Conference on Modelling, Identification and Control, Sousse, Tunisia.10.1109/ICMIC.2015.7409385 Search in Google Scholar

38. Scherer C.W. (2001), LPV control and full block multipliers, Automatica, Vol. 37, No. 3, 361–375. Search in Google Scholar

39. Seto D., and Baillieul J. (1994), Control problem in super-articulated mechanical systems, IEEE Transactions on Automatic Control, Vol. 39, No. 14, 2442–2453. Search in Google Scholar

40. Shamma J., and Athans M. (1991), Gain scheduling: potential hazards and possible remedies, In: Proc. of American Control Conference, Boston, USA, 516–521.10.23919/ACC.1991.4791421 Search in Google Scholar

41. Siradjuddin I., Amalia Z., Setiawan B., Ronilaya F., Rohadi E., Setiawan A., Rahmad C., and Adhisuwignjo S. (2018), Stabilising a cart inverted pendulum with an augmented PID control scheme, MATEC Web of Conference, Vol. 197, 11013. Search in Google Scholar

42. Skogestad S., and Postlethwaite I. (2003), Multivariable Feedback Control, Analysis and Design, John Wiley & Sons, Chichester. Search in Google Scholar

43. Tasoujian S., Salavati S., Franchek M.A., and Grigoriadis K.M. (2020), Robust delay-dependent LPV synthesis for blood pressure control with real-time Bayesian parameter estimation, IET Control Theory & Applications, Vol. 14, No. 10, 1334–1345. Search in Google Scholar

44. Vu V.T., Sename O., Dugard L., and Gaspar P. (2017), Multi objective H active-roll bar control for heavy vehicles, IFAC Paper-sOnLine, Vol. 50, No. 1, 13802–13807. Search in Google Scholar

45. Wright A. (1991), Genetic Algorithms for Real Parameter Optimization, Morgan Kaufmann, San Mateo, California.10.1016/B978-0-08-050684-5.50016-1 Search in Google Scholar

46. Wu F. (2001), A generalized LPV system analysis and control synthesis framework, International Journal of Control, Vol. 74, No. 9, 745–759. Search in Google Scholar

47. Wu F., Yang X., Packard A., and Becker G. (1996), Induced L2 norm control for LPV systems with bounded parameter variation rates, International Journal of Robust and Nonlinear Control, Vol. 6, No. 9-10, 983–998. Search in Google Scholar

48. Xu F., Tan J., Wang Y., Wang X., Liang B., and Yuan B. (2019), Robust fault detection and set-theoretic UIO for discrete-time LPV systems with state and output equations scheduled by inexact scheduling variables, IEEE Transactions on Automatic Control, Vol. 64, No. 12, 4982–4997. Search in Google Scholar

49. Yang D., Wang Y., and Chen Z. (2020), Robust fault diagnosis and fault tolerant control for PEMFC system based on an augmented LPV observer, International Journal of Hydrogen Energy, Vol. 45, No. 24, 13508–13522. Search in Google Scholar

50. Yeo B.K., and Lu Y. (1999), Array failure correction with a genetic algorithm, IEEE Transactions on Antennas and Propagation, Vol. 47, No. 7, 823–828. Search in Google Scholar

51. Younis W., and Abdelati M. (2009), Design and implementation of an experimental Segway model, AIP Conference Proceedings, Vol. 1107, 350–354. Search in Google Scholar

52. Zhou K., and Doyle J.C. (1998), Essentials of Robust Control, Prentice Hall, Upper Saddle River, NJ. Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo