INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. AC (2020), STAG Autogas Section. Retrieved May 10, 2020, from https://www.ac.com.pl/en. Search in Google Scholar

2. Aleiferis P. G., Serras-Pereira J., Augoye A., Davies T. J., Crack-nell R. F., Richardson D. (2010), Effect of fuel temperature on in-nozzle cavitation and spray formation of liquid hydrocarbons and alcohols from a real-size optical injector for direct-injection spark-ignition engines, International Journal of Heat and Mass Transfer, 53(21–22): 4588–4606.10.1016/j.ijheatmasstransfer.2010.06.033 Search in Google Scholar

3. Aleiferis P. G., Van Romunde Z. R. (2013), An analysis of spray development with iso-octane, n-pentane, gasoline, ethanol and nbutanol from a multi-hole injector under hot fuel conditions, Fuel, 105: 143–168.10.1016/j.fuel.2012.07.044 Search in Google Scholar

4. Ambrozik A., Kurczyński D. (2008), Analysis of fast-changing quantities in the AD3.152 UR engine running of mineral fuel, plant fuel and their blends, Motrol, 10: 11–22. Search in Google Scholar

5. Baldi F., Theotokatos G., Andersson K. (2015), Development of a combined mean value-zero dimensional model and application for a large marine four-stroke Diesel engine simulation, Applied Energy 154: 402–415.10.1016/j.apenergy.2015.05.024 Search in Google Scholar

6. Bensetti M., Le Bihan Y., Marchand C. (2006), Development of an hybrid 3D FEM for the modeling of micro-coil sensors and actuators, Sensors and Actuators, A: Physical, 129(1–2): 207–211.10.1016/j.sna.2005.11.060 Search in Google Scholar

7. Borawski A., Szpica D., Mieczkowski G., Awad M. M., Shalby R. M., Sallah M. (2021), Simulation study of the vehicle braking process with temperature dependent coefficient of friction between brake pad and disc, Heat Transfer Research, 52(2): 1-11.10.1615/HeatTransRes.2020036668 Search in Google Scholar

8. Borawski A., Szpica D., Mieczkowski G., Borawska E., Awad M. M., Shalby R. M., Sallah M. (2020), Theoretical analysis of the motorcycle front brake heating process during high initial speed emergency braking, Journal of Applied and Computational Mechanics, 6(SI): 1431–1437. Search in Google Scholar

9. Broatch A., Olmeda P., Margot X., Escalona J. (2019), New approach to study the heat transfer in internal combustion engines by 3D modelling, International Journal of Thermal Sciences, 138: 405–415.10.1016/j.ijthermalsci.2019.01.006 Search in Google Scholar

10. Brumercik F., Lukac M., Caban J., Krzysiak Z., Glowacz A. (2020), Comparison of selected parameters of a planetary gearbox with involute and convex-concave teeth flank profiles, Applied Sciences (Switzerland), 10(4): 1417.10.3390/app10041417 Search in Google Scholar

11. Buhl S., Gleiss F., Köhler M., Hartmann F., Messig D., Brücker C., Hasse C. (2017), A combined numerical and experimental study of the 3D tumble structure and piston boundary layer development during the Intake stroke of a gasoline engine, Flow, Turbulence and Combustion, 98: 579–600.10.1007/s10494-016-9754-1 Search in Google Scholar

12. Cerri T., Onorati A., Mattarelli E. (2006), 1D engine simulation of a small HSDI diesel engine applying a predictive combustion model, Journal of Engineering for Gas Turbines, 130(1): 012802.10.1115/1.2747258 Search in Google Scholar

13. Clairotte M., Suarez-Bertoa R., Zardini A. A., Giechaskiel B., Pavlovic J., Valverde V., Ciuffo B., Astorga C. (2020), Exhaust emission factors of greenhouse gases (GHGs) from European road vehicles, Environmental Sciences Europe, 32(1): 125.10.1186/s12302-020-00407-5 Search in Google Scholar

14. Council of the European Union (2014), Council Directive 2014/94/EU of 22 October 2014 on the deployment of alternative fuels infrastructure. In Official Journal of the European Union. Search in Google Scholar

15. Czarnigowski J. (2010), The impact of supply pressure on gas injector expenditure characteristics, Silniki Spalinowe, 49(2): 18–26.10.19206/CE-117142 Search in Google Scholar

16. Czarnigowski J. (2012), Theoretical and empirical study of modelling a pulse gas injector. Wydawnictwo Politechniki Lubelskiej, Lublin. Search in Google Scholar

17. Czarnigowski J. (2014), Experiments on the effect of pressure and voltage supply on pulse injector opening time, SAE Technical Papers, 2014-01-2560.10.4271/2014-01-2560 Search in Google Scholar

18. Czarnigowski J., Jakliński P., Wendeker M., Pietrykowski K., Grabowski Ł. (2009), The analyses of the phenomena inside a CNG flap-valve injector during gas flow, Combustion Engines, 136(1): 10–18.10.19206/CE-117215 Search in Google Scholar

19. Czarnigowski J., Wendeker M., Jakliński P., Rola M., Grabowski Ł., Pietrykowski K. (2007), CFD model of fuel rail for LPG systems, SAE Technical Papers, 2007-01-2053.10.4271/2007-01-2053 Search in Google Scholar

20. Da Silva Trindade W. R., Dos Santos R. G. (2016), Combustion modeling applied to engines using a 1D simulation code, SAE Technical Papers, 2016-36-0347.10.4271/2016-36-0347 Search in Google Scholar

21. Duk M., Czarnigowski J. (2012), The method for indirect identification gas injector opening delay time, Przeglad Elektrotechniczny, 88(10 B): 59–63. Search in Google Scholar

22. Dziewiątkowski M., Szpica D., Borawski A. (2020), Evaluation of impact of combustion engine controller adaptation process on level of exhaust gas emissions in gasoline and compressed natural gas supply process, Engineering for Rural Development, 19: 541–548.10.22616/ERDev.2020.19.TF122 Search in Google Scholar

23. Feng Y., Wang H., Gao R., Zhu Y. (2019), A zero-dimensional mixing controlled combustion model for real time performance simulation of marine two-stroke diesel engines, Energies, 12(10): 2000.10.3390/en12102000 Search in Google Scholar

24. García A., Monsalve-Serrano J., Villalta D., Guzmán-Mendoza M. (2020), Methanol and OMEx as fuel candidates to fulfill the potential EURO VII emissions regulation under dual-mode dual-fuel combustion, Fuel, 287: 119548.10.1016/j.fuel.2020.119548 Search in Google Scholar

25. Jang C., Kim S., Choi S. (2000), An experimental and analytical study of the spray characteristics of an intermittent air-assisted fuel injector, Atomization and Sprays, 10(2): 199–217.10.1615/AtomizSpr.v10.i2.60 Search in Google Scholar

26. Kakuhou A., Urushihara T., Itoh T., Takagi Y. (1999), Characteristics of mixture formation in a direct injection SI engine with optimized in-cylinder swirl air motion, Journal of Engines, 108: 550–558.10.4271/1999-01-0505 Search in Google Scholar

27. Kim H. J., Lee S. H., Kwon S. I., Park S., Lee J., Keel J. H., Lee J. T., Park S. (2020), Investigation of the emission characteristics of light-duty diesel vehicles in korea based on EURO-VI standards according to type of after-treatment system, Energies, 13(18): 4936.10.3390/en13184936 Search in Google Scholar

28. Kosmadakis G. M., Rakopoulos C. D., Demuynck J., De Paepe M., Verhelst S. (2012), CFD modeling and experimental study of combustion and nitric oxide emissions in hydrogen-fueled spark-ignition engine operating in a very wide range of EGR rates, International Journal of Hydrogen Energy, 37(14): 10917–10934.10.1016/j.ijhydene.2012.04.067 Search in Google Scholar

29. Leach B., Zhao H., Li Y., Ma T. (2007), Two-phase fuel distribution measurements in a gasoline direct injection engine with an air-assisted injector using advanced optical diagnostics, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 221(6): 663–673.10.1243/09544070JAUTO305 Search in Google Scholar

30. Marčič S., Marčič M., Praunseis Z. (2015), Mathematical model for the injector of a common rail fuel-injection system, Engineering, 7: 307–321.10.4236/eng.2015.76027 Search in Google Scholar

31. Mieczkowski G. (2019), Static electromechanical characteristics of piezoelectric converters with various thickness and length of piezoelectric layers, Acta Mechanica et Automatica, 13(1): 30–36.10.2478/ama-2019-0005 Search in Google Scholar

32. Mieczkowski G., Borawski A., Szpica D. (2020), Static electromechanical characteristic of a three-layer circular piezoelectric transducer, Sensors (Switzerland), 20(1), 222.10.3390/s20010222698278631906057 Search in Google Scholar

33. Mohammadi A., Jazayeri A., Ziabasharhagh M. (2012), Numerical simulation of direct injection engine with using porous medium, Proceedings of the Spring Technical Conference of the ASME Internal Combustion Engine Division, ICES2012-81150, pp. 785–795. Search in Google Scholar

34. Ngayihi Abbe C. V., Nzengwa R., Danwe R., Ayissi Z. M., Obonou M. (2015), A study on the 0D phenomenological model for diesel engine simulation: Application to combustion of Neem methyl esther biodiesel, Energy Conversion and Management, 89: 568–576.10.1016/j.enconman.2014.10.005 Search in Google Scholar

35. Panão M. R. O., Moreira A. L. N. (2005), Flow characteristics of spray impingement in PFI injection systems, Experiments in Fluids, 39(2): 364–374.10.1007/s00348-005-0996-2 Search in Google Scholar

36. Passarini L. C., Nakajima P. R. (2003), Development of a high-speed solenoid valve: an investigation of the importance of the armature mass on the dynamic response, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 25(4): 329–335.10.1590/S1678-58782003000400003 Search in Google Scholar

37. Passarini L. C., Pinotti M. (2003), A new model for fast-acting electromagnetic fuel injector analysis and design, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 25(1): 95–106.10.1590/S1678-58782003000100014 Search in Google Scholar

38. Pogulyaev Y. D., Baitimerov R. M., Rozhdestvenskii Y. V. (2015), Detailed dynamic modeling of common rail piezo injector, Procedia Engineering, 129: 93–98.10.1016/j.proeng.2015.12.014 Search in Google Scholar

39. Polášek M., Macek J., Takáts M., Vítek O. (2002), Application of advanced simulation methods and their combination with experiments to modeling of hydrogen fueled engine emission potentials, SAE Technical Papers, 2002-01-0373.10.4271/2002-01-0373 Search in Google Scholar

40. Raslavičius L., Azzopardi B., Keršys A., Starevičius M., Bazaras Ž., Makaras R. (2015), Electric vehicles challenges and opportunities: Lithuanian review, Renewable and Sustainable Energy Reviews, 42: 786–800.10.1016/j.rser.2014.10.076 Search in Google Scholar

41. Raslavičius L., Keršys A., Makaras R. (2017), Management of hybrid powertrain dynamics and energy consumption for 2WD, 4WD, and HMMWV vehicles, Renewable and Sustainable Energy Reviews, 68: 380–396.10.1016/j.rser.2016.09.109 Search in Google Scholar

42. Raslavičius L., Keršys A., Mockus S., Keršiene N., Starevičius M. (2014), Liquefied petroleum gas (LPG) as a medium-term option in the transition to sustainable fuels and transport, Renewable and Sustainable Energy Reviews, 32: 513–525.10.1016/j.rser.2014.01.052 Search in Google Scholar

43. Robart D., Breuer S., Reckers W., Kneer R. (2001), Assessment of pulsed gasoline fuel sprays by means of qualitative and quantitative laser-based diagnostic methods, Particle and Particle Systems Characterization, 18(4): 179–189.10.1002/1521-4117(200112)18:4<179::AID-PPSC179>3.0.CO;2-D Search in Google Scholar

44. Satkoski C. A., Shaver G. M., More R., Meckl P., Memering D. (2009), Dynamic modeling of a piezoelectric actuated fuel injector, IFAC Proceedings Volumes, 42(26): 235–240.10.3182/20091130-3-FR-4008.00031 Search in Google Scholar

45. Sawant P., Bari S. (2017), Combined effects of variable intake manifold length, variable valve timing and duration on the performance of an internal combustion engine, ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), IMECE2017-70470, V006T08A052.10.1115/IMECE2017-70470 Search in Google Scholar

46. Sawant Pauras, Warstler M., Bari S. (2018), Exhaust tuning of an internal combustion engine by the combined effects of variable exhaust pipe diameter and an exhaust valve timing system, Energies, 11(6): 1545.10.3390/en11061545 Search in Google Scholar

47. Serras-Pereira J., Aleiferis P. G., Walmsley H. L., Davies T. J., Cracknell R. F. (2013), Heat flux characteristics of spray wall impingement with ethanol, butanol, iso-octane, gasoline and E10 fuels, International Journal of Heat and Fluid Flow, 44: 662–683.10.1016/j.ijheatfluidflow.2013.09.010 Search in Google Scholar

48. Szpica D. (2015), Simplified numerical simulation as the base for throttle flow characteristics designation, Mechanika, 21(2): 129–133.10.5755/j01.mech.21.2.8850 Search in Google Scholar

49. Szpica D. (2016), The influence of selected adjustment parameters on the operation of LPG vapor phase pulse injectors, Journal of Natural Gas Science and Engineering, 34: 1127–1136.10.1016/j.jngse.2016.08.014 Search in Google Scholar

50. Szpica D. (2018), Validation of indirect methods used in the operational assessment of LPG vapor phase pulse injectors, Measurement: Journal of the International Measurement Confederation, 118: 253–261.10.1016/j.measurement.2018.01.045 Search in Google Scholar

51. Szpica D., Czaban J. (2014), Operational assessment of selected gasoline and LPG vapour injector dosage regularity, Mechanika, 20(5): 480–488.10.5755/j01.mech.20.5.7780 Search in Google Scholar

52. Szpica D., Kusznier M. (2020), Modelling of the low pressure gas injector operation, Acta Mechanica et Automatica, 14(1(51)): 29–35.10.2478/ama-2020-0005 Search in Google Scholar

53. Taghizadeh M., Ghaffari A., Najafi F. (2009), Modeling and identification of a solenoid valve for PWM control applications, Comptes Rendus – Mecanique, 337(3): 131–140.10.1016/j.crme.2009.03.009 Search in Google Scholar

54. Walaszyk A., Busz W. (2013), Application of optical method for the analysis delay between control injector coil and beginning of the fuel injection, Combustion Engines, 154(3): 1038–1041. Search in Google Scholar

55. Waluś K. J., Warguła Ł., Krawiec P., Adamiec J. M. (2018), Legal regulations of restrictions of air pollution made by non-road mobile machinery—the case study for Europe: a review, Environmental Science and Pollution Research, 25(4): 3243–3259.10.1007/s11356-017-0847-8581157029238926 Search in Google Scholar

56. Warguła Ł., Kukla M., Lijewski P., Dobrzyński M., Markiewicz F. (2020), Influence of the use of Liquefied Petroleum Gas (LPG) systems in woodchippers powered by small engines on exhaust emissions and operating costs, Energies, 13: 5773.10.3390/en13215773 Search in Google Scholar

57. Warguła Ł., Kukla M., Lijewski P., Dobrzyński M., Markiewicz F. (2020a), Impact of Compressed Natural Gas (CNG) fuel systems in small engine wood chippers on exhaust emissions and fuel consumption, Energies, 13(24): 6709.10.3390/en13246709 Search in Google Scholar

58. Warguła L., Waluś K. J., Krawiec, P. (2018), Small engines spark ignited (SI) for non-road mobile machinery- Review. Transport Means - Proceedings of the International Conference, 2018-Octob, 585–591. Search in Google Scholar

59. WLTP (2019). WLTP lab test. Retrieved November 1, 2019, from http://wltpfacts.eu/. Search in Google Scholar

60. Yang W. Y., Cao W., Chung T.-S., Morris J. (2005), Applied Numerical Methods Using MATLAB®. In Applied Numerical Methods Using MATLAB®.10.1002/0471705195 Search in Google Scholar