Accesso libero

TAGLN2 Exacerbates Acute Pancreatitis-Induced Liver Injury by Increasing Hepatocyte Pyroptosis via Kupffer Cells-Mediated Inflammatory Response

, , , ,  e   
05 giu 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Almeida JI, Tenreiro MF, Martinez-Santamaria L et al. (2022) Hallmarks of the human intestinal microbiome on liver maturation and function. J Hepatol 76:694–725. https://doi.org/10.1016/j.jhep.2021.10.015 AlmeidaJI TenreiroMF Martinez-SantamariaL 2022 Hallmarks of the human intestinal microbiome on liver maturation and function J Hepatol 76 694 725 https://doi.org/10.1016/j.jhep.2021.10.015 Search in Google Scholar

Chen X, He WT, Hu L et al. (2016) Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res 26:1007–1020. https://doi.org/10.1038/cr.2016.100 ChenX HeWT HuL 2016 Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis Cell Res 26 1007 1020 https://doi.org/10.1038/cr.2016.100 Search in Google Scholar

Dong V, Nanchal R, Karvellas CJ (2020) Pathophysiology of acute liver failure. Nutr Clin Pract 35:24–29. https://doi.org/10.1002/ncp.10459 DongV NanchalR KarvellasCJ 2020 Pathophysiology of acute liver failure Nutr Clin Pract 35 24 29 https://doi.org/10.1002/ncp.10459 Search in Google Scholar

Fernandes-Alnemri T, Wu J, Yu JW et al. (2007) The pyroptosome: A supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 14:1590–1604. https://doi.org/10.1038/sj.cdd.4402194 Fernandes-AlnemriT WuJ YuJW 2007 The pyroptosome: A supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation Cell Death Differ 14 1590 1604 https://doi.org/10.1038/sj.cdd.4402194 Search in Google Scholar

Habtezion A, Gukovskaya AS, Pandol SJ (2019) Acute pancreatitis: A multifaceted set of organelle and cellular interactions. Gastroenterology 156:1941–1950. https://doi.org/10.1053/j.gastro.2018.11.082 HabtezionA GukovskayaAS PandolSJ 2019 Acute pancreatitis: A multifaceted set of organelle and cellular interactions Gastroenterology 156 1941 1950 https://doi.org/10.1053/j.gastro.2018.11.082 Search in Google Scholar

Hyun JJ, Lee HS (2014) Experimental models of pancreatitis. Clin Endosc 47:212–216. https://doi.org/10.5946/ce.2014.47.3.212 HyunJJ LeeHS 2014 Experimental models of pancreatitis Clin Endosc 47 212 216 https://doi.org/10.5946/ce.2014.47.3.212 Search in Google Scholar

Ismail OZ, Bhayana V (2017) Lipase or amylase for the diagnosis of acute pancreatitis? Clin Biochem 50:1275–1280. https://doi.org/10.1016/j.clinbiochem.2017.07.003 IsmailOZ BhayanaV 2017 Lipase or amylase for the diagnosis of acute pancreatitis? Clin Biochem 50 1275 1280 https://doi.org/10.1016/j.clinbiochem.2017.07.003 Search in Google Scholar

Jaber S, Garnier M, Asehnoune K et al. (2022) Guidelines for the management of patients with severe acute pancreatitis, 2021. Anaesth Crit Care Pain Med 41:101060. https://doi.org/10.1016/j.accpm.2022.101060 JaberS GarnierM AsehnouneK 2022 Guidelines for the management of patients with severe acute pancreatitis, 2021 Anaesth Crit Care Pain Med 41 101060 https://doi.org/10.1016/j.accpm.2022.101060 Search in Google Scholar

Ji R, Chen Y, Chen W et al. (2021) Identification of significant genes and pathways in acute pancreatitis via bioinformatical analysis. Dig Dis Sci 66:3045–3053. https://doi.org/10.1007/s10620-020-06598-4 JiR ChenY ChenW 2021 Identification of significant genes and pathways in acute pancreatitis via bioinformatical analysis Dig Dis Sci 66 3045 3053 https://doi.org/10.1007/s10620-020-06598-4 Search in Google Scholar

Jorgensen I, Miao EA (2015) Pyroptotic cell death defends against intracellular pathogens. Immunol Rev 265:130–142. https://doi.org/10.1111/imr.12287 JorgensenI MiaoEA 2015 Pyroptotic cell death defends against intracellular pathogens Immunol Rev 265 130 142 https://doi.org/10.1111/imr.12287 Search in Google Scholar

Kim HR, Lee HS, Lee KS et al. (2017) An essential role for TAGLN2 in Phagocytosis of lipopolysaccharide-activated macrophages. Sci Rep 7:8731. https://doi.org/10.1038/s41598-017-09144-x KimHR LeeHS LeeKS 2017 An essential role for TAGLN2 in Phagocytosis of lipopolysaccharide-activated macrophages Sci Rep 7 8731 https://doi.org/10.1038/s41598-017-09144-x Search in Google Scholar

Kim HR, Park JS, Karabulut H et al. (2021a) Transgelin-2: A double-edged sword in immunity and cancer metastasis. Front Cell Dev Biol 9:606149. https://doi.org/10.3389/fcell.2021.606149 KimHR ParkJS KarabulutH 2021a Transgelin-2: A double-edged sword in immunity and cancer metastasis Front Cell Dev Biol 9 606149 https://doi.org/10.3389/fcell.2021.606149 Search in Google Scholar

Kim HR, Park JS, Park JH et al. (2021b) Cell-permeable transgelin-2 as a potent therapeutic for dendritic cell-based cancer immunotherapy. J Hematol Oncol 14:43. https://doi.org/10.1186/s13045-021-01058-6 KimHR ParkJS ParkJH 2021b Cell-permeable transgelin-2 as a potent therapeutic for dendritic cell-based cancer immunotherapy J Hematol Oncol 14 43 https://doi.org/10.1186/s13045-021-01058-6 Search in Google Scholar

Lee PJ, Papachristou GI (2019) New insights into acute pancreatitis. Nat Rev Gastroenterol Hepatol 16:479–496. https://doi.org/10.1038/s41575-019-0158-2 LeePJ PapachristouGI 2019 New insights into acute pancreatitis Nat Rev Gastroenterol Hepatol 16 479 496 https://doi.org/10.1038/s41575-019-0158-2 Search in Google Scholar

Ling X, Qi C, Cao K et al. (2024) METTL3-mediated deficiency of lncRNA HAR1A drives non-small cell lung cancer growth and metastasis by promoting ANXA2 stabilization. Cell Death Discov 10:203. https://doi.org/10.1038/s41420-024-01965-w LingX QiC CaoK 2024 METTL3-mediated deficiency of lncRNA HAR1A drives non-small cell lung cancer growth and metastasis by promoting ANXA2 stabilization Cell Death Discov 10 203 https://doi.org/10.1038/s41420-024-01965-w Search in Google Scholar

Liu K, Liu J, Zou B et al. (2022) Trypsin-mediated sensitization to ferroptosis increases the severity of pancreatitis in mice. Cell Mol Gastroenterol Hepatol 13:483–500. https://doi.org/10.1016/j.jcmgh.2021.09.008 LiuK LiuJ ZouB 2022 Trypsin-mediated sensitization to ferroptosis increases the severity of pancreatitis in mice Cell Mol Gastroenterol Hepatol 13 483 500 https://doi.org/10.1016/j.jcmgh.2021.09.008 Search in Google Scholar

Li H, Wu D, Zhang H et al. (2023) New insights into regulatory cell death and acute pancreatitis. Heliyon 9:e18036. https://doi.org/10.1016/j.heliyon.2023.e18036 LiH WuD ZhangH 2023 New insights into regulatory cell death and acute pancreatitis Heliyon 9 e18036 https://doi.org/10.1016/j.heliyon.2023.e18036 Search in Google Scholar

Li Z, Ye Z, Ma J et al. (2021) MicroRNA-133b alleviates doxorubicin-induced cardiomyocyte apoptosis and cardiac fibrosis by tar-geting PTBP1 and TAGLN2. Int J Mol Med 48:125. https://doi.org/10.3892/ijmm.2021.4958 LiZ YeZ MaJ 2021 MicroRNA-133b alleviates doxorubicin-induced cardiomyocyte apoptosis and cardiac fibrosis by tar-geting PTBP1 and TAGLN2 Int J Mol Med 48 125 https://doi.org/10.3892/ijmm.2021.4958 Search in Google Scholar

Li H, Zeng X, Sun D et al. (2024) Albiflorin alleviates severe acute pancreatitis-associated liver injury by inactivating P38MAPK/NF-κB signaling pathway. Biochem Genet 62:4987–5003. https://doi.org/10.1007/s10528-024-10686-9 LiH ZengX SunD 2024 Albiflorin alleviates severe acute pancreatitis-associated liver injury by inactivating P38MAPK/NF-κB signaling pathway Biochem Genet 62 4987 5003 https://doi.org/10.1007/s10528-024-10686-9 Search in Google Scholar

Mandalia A, Wamsteker EJ, DiMagno MJ (2018) Recent advances in understanding and managing acute pancreatitis. F1000Res 7:F1000FacultyRev–959. https://doi.org/10.12688/f1000research.14244.2 MandaliaA WamstekerEJ DiMagnoMJ 2018 Recent advances in understanding and managing acute pancreatitis F1000Res 7 F1000FacultyRev–959. https://doi.org/10.12688/f1000research.14244.2 Search in Google Scholar

Mareninova OA, Hermann K, French SW et al. (2009) Impaired autophagic flux mediates acinar cell vacuole formation and tryp-sinogen activation in rodent models of acute pancreatitis. J Clin Invest 119:3340–3355. https://doi.org/10.1172/jci38674 MareninovaOA HermannK FrenchSW 2009 Impaired autophagic flux mediates acinar cell vacuole formation and tryp-sinogen activation in rodent models of acute pancreatitis J Clin Invest 119 3340 3355 https://doi.org/10.1172/jci38674 Search in Google Scholar

Na BR, Jun CD (2015) TAGLN2-mediated actin stabilization at the immunological synapse: Implication for cytotoxic T cell control of target cells. BMB Rep 48:369–370. https://doi.org/10.5483/bmbrep.2015.48.7.132 NaBR JunCD 2015 TAGLN2-mediated actin stabilization at the immunological synapse: Implication for cytotoxic T cell control of target cells BMB Rep 48 369 370 https://doi.org/10.5483/bmbrep.2015.48.7.132 Search in Google Scholar

National Research Council Committee for the Update of the Guide for the Care and Use of Laboratory Animals. (2011) The National Academies Collection: Reports funded by National Institutes of Health. In: Guide for the Care and Use of Laboratory Animals. National Academies Press (US) Copyright © 2011, National Academy of Sciences, Washington, DC. https://doi.org/10.17226/12910 National Research Council Committee for the Update of the Guide for the Care and Use of Laboratory Animals 2011 The National Academies Collection: Reports funded by National Institutes of Health In: Guide for the Care and Use of Laboratory Animals National Academies Press (US) Copyright © 2011, National Academy of Sciences Washington, DC https://doi.org/10.17226/12910 Search in Google Scholar

O'Dea E, Hoffmann A (2009) NF-κB signaling. Wiley Interdiscip Rev Syst Biol Med 1:107–115. https://doi.org/10.1002/wsbm.30 O'DeaE HoffmannA 2009 NF-κB signaling Wiley Interdiscip Rev Syst Biol Med 1 107 115 https://doi.org/10.1002/wsbm.30 Search in Google Scholar

Osna NA, Poluektova LY (2023) Elucidating the role of extracellular vesicles in liver injury induced by HIV. Expert Rev Gastroenterol Hepatol 17:701–708. https://doi.org/10.1080/17474124.2023.2230867 OsnaNA PoluektovaLY 2023 Elucidating the role of extracellular vesicles in liver injury induced by HIV Expert Rev Gastroenterol Hepatol 17 701 708 https://doi.org/10.1080/17474124.2023.2230867 Search in Google Scholar

Pan T, Wang S, Wang Z (2023) An integrated analysis identified TAGLN2 as an oncogene indicator related to prognosis and immunity in Pan-cancer. J Cancer 14:1809–1836. https://doi.org/10.7150/jca.84454 PanT WangS WangZ 2023 An integrated analysis identified TAGLN2 as an oncogene indicator related to prognosis and immunity in Pan-cancer J Cancer 14 1809 1836 https://doi.org/10.7150/jca.84454 Search in Google Scholar

Piao X, Sui X, Liu B et al. (2021) Picroside II improves severe acute pancreatitis-induced hepatocellular injury in rats by affecting JAK2/STAT3 phosphorylation signaling. Biomed Res Int 2021:9945149. https://doi.org/10.1155/2021/9945149 PiaoX SuiX LiuB 2021 Picroside II improves severe acute pancreatitis-induced hepatocellular injury in rats by affecting JAK2/STAT3 phosphorylation signaling Biomed Res Int 2021 9945149 https://doi.org/10.1155/2021/9945149 Search in Google Scholar

Rej R (1989) Aminotransferases in disease. Clin Lab Med 9:667–687. https://doi.org/10.1016/S0272-2712(18)30598-5 RejR 1989 Aminotransferases in disease Clin Lab Med 9 667 687 https://doi.org/10.1016/S0272-2712(18)30598-5 Search in Google Scholar

Shapland C, Hsuan JJ, Totty NF et al. (1993) Purification and properties of transgelin: A transformation and shape change sensitive actin-gelling protein. J Cell Biol 121:1065–1073. https://doi.org/10.1083/jcb.121.5.1065 ShaplandC HsuanJJ TottyNF 1993 Purification and properties of transgelin: A transformation and shape change sensitive actin-gelling protein J Cell Biol 121 1065 1073 https://doi.org/10.1083/jcb.121.5.1065 Search in Google Scholar

Shi J, Ren M, She X et al. (2020) Transgelin-2 contributes to proliferation and progression of hepatocellular carcinoma via regulat-ing Annexin A2. Biochem Biophys Res Commun 523:632–638. https://doi.org/10.1016/j.bbrc.2020.01.028 ShiJ RenM SheX 2020 Transgelin-2 contributes to proliferation and progression of hepatocellular carcinoma via regulat-ing Annexin A2 Biochem Biophys Res Commun 523 632 638 https://doi.org/10.1016/j.bbrc.2020.01.028 Search in Google Scholar

Shojaie L, Iorga A, Dara L (2020) Cell death in liver diseases: A review. Int J Mol Sci 21:9682. https://doi.org/10.3390/ijms21249682 ShojaieL IorgaA DaraL 2020 Cell death in liver diseases: A review Int J Mol Sci 21 9682 https://doi.org/10.3390/ijms21249682 Search in Google Scholar

Swisher JF, Khatri U, Feldman GM (2007) Annexin A2 is a soluble mediator of macrophage activation. J Leukoc Biol 82:1174–1184. https://doi.org/10.1189/jlb.0307154 SwisherJF KhatriU FeldmanGM 2007 Annexin A2 is a soluble mediator of macrophage activation J Leukoc Biol 82 1174 1184 https://doi.org/10.1189/jlb.0307154 Search in Google Scholar

Tian X, Yang W, Jiang W et al. (2024) Multi-omics profiling identifies microglial Annexin A2 as a key mediator of NF-κB pro-inflammatory signaling in ischemic reperfusion injury. Mol Cell Proteomics 23:100723. https://doi.org/10.1016/j.mcpro.2024.100723 TianX YangW JiangW 2024 Multi-omics profiling identifies microglial Annexin A2 as a key mediator of NF-κB pro-inflammatory signaling in ischemic reperfusion injury Mol Cell Proteomics 23 100723 https://doi.org/10.1016/j.mcpro.2024.100723 Search in Google Scholar

Wallach D, Kang TB, Dillon CP et al. (2016) Programmed necrosis in inflammation: Toward identification of the effector molecules. Science 352:aaf2154. https://doi.org/10.1126/science.aaf2154 WallachD KangTB DillonCP 2016 Programmed necrosis in inflammation: Toward identification of the effector molecules Science 352 aaf2154 https://doi.org/10.1126/science.aaf2154 Search in Google Scholar

Wang H, Zhang X, Liu C et al. (2022) TAGLN2-regulated trophoblast migration, invasion and fusion are impaired in preeclampsia. Front Cell Dev Biol 10:810633. https://doi.org/10.3389/fcell.2022.810633 WangH ZhangX LiuC 2022 TAGLN2-regulated trophoblast migration, invasion and fusion are impaired in preeclampsia Front Cell Dev Biol 10 810633 https://doi.org/10.3389/fcell.2022.810633 Search in Google Scholar

Wang T, Zhao D, Zhang Y et al. (2024) Annexin A2: A double-edged sword in pathogen infection. Pathogens 13:564. https://doi.org/10.3390/pathogens13070564 WangT ZhaoD ZhangY 2024 Annexin A2: A double-edged sword in pathogen infection Pathogens 13 564 https://doi.org/10.3390/pathogens13070564 Search in Google Scholar

Wu Q, Zhao B (2023) Isoflurane ameliorates oxygen-glucose deprivation-induced cardiomyocyte injury through SIRT6/DNMT1 pathway. Signa Vitae 19:154–160. https://doi.org/10.22514/sv.2023.020 WuQ ZhaoB 2023 Isoflurane ameliorates oxygen-glucose deprivation-induced cardiomyocyte injury through SIRT6/DNMT1 pathway Signa Vitae 19 154 160 https://doi.org/10.22514/sv.2023.020 Search in Google Scholar

Xiao AY, Tan ML, Wu LM et al. (2016) Global incidence and mortality of pancreatic diseases: A systematic review, meta-analysis, and meta-regression of population-based cohort studies. Lancet Gastroenterol Hepatol 1:45–55. https://doi.org/10.1016/s2468-1253(16)30004-8 XiaoAY TanML WuLM 2016 Global incidence and mortality of pancreatic diseases: A systematic review, meta-analysis, and meta-regression of population-based cohort studies Lancet Gastroenterol Hepatol 1 45 55 https://doi.org/10.1016/s2468-1253(16)30004-8 Search in Google Scholar

Xu H, Chen X, Liu D et al. (2023) Hispidulin protective impact on sepsis induced acute kidney injury is mediated by regulation of AKT and NF-κB pathway. Signa Vitae 19:152–159. https://doi.org/10.22514/sv.2023.109 XuH ChenX LiuD 2023 Hispidulin protective impact on sepsis induced acute kidney injury is mediated by regulation of AKT and NF-κB pathway Signa Vitae 19 152 159 https://doi.org/10.22514/sv.2023.109 Search in Google Scholar

Yang CJ, Chen J, Phillips AR et al. (2014) Predictors of severe and critical acute pancreatitis: A systematic review. Dig Liver Dis 46:446–451. https://doi.org/10.1016/j.dld.2014.01.158 YangCJ ChenJ PhillipsAR 2014 Predictors of severe and critical acute pancreatitis: A systematic review Dig Liver Dis 46 446 451 https://doi.org/10.1016/j.dld.2014.01.158 Search in Google Scholar

Yang H, Liu D, Wang Y (2023) Physalin A exerts neuroprotective effects: Inhibition of OGD/R-induced cellular pyroptosis and inflammatory responses in nerve cells. Signa Vitae 19:168–174. https://doi.org/10.22514/sv.2023.111 YangH LiuD WangY 2023 Physalin A exerts neuroprotective effects: Inhibition of OGD/R-induced cellular pyroptosis and inflammatory responses in nerve cells Signa Vitae 19 168 174 https://doi.org/10.22514/sv.2023.111 Search in Google Scholar

Yan J, Li S, Li S (2014) The role of the liver in sepsis. Int Rev Immunol 33:498–510. https://doi.org/10.3109/08830185.2014.889129 YanJ LiS LiS 2014 The role of the liver in sepsis Int Rev Immunol 33 498 510 https://doi.org/10.3109/08830185.2014.889129 Search in Google Scholar

Yin LM, Ulloa L, Yang YQ (2019) Transgelin-2: Biochemical and clinical implications in cancer and asthma. Trends Biochem Sci 44:885–896. https://doi.org/10.1016/j.tibs.2019.05.004 YinLM UlloaL YangYQ 2019 Transgelin-2: Biochemical and clinical implications in cancer and asthma Trends Biochem Sci 44 885 896 https://doi.org/10.1016/j.tibs.2019.05.004 Search in Google Scholar

Yu Y, He Z, Cao Y et al. (2016) TAGLN2, a novel regulator involved in Hepatitis B virus transcription and replication. Biochem Biophys Res Commun 477:1051–1058. https://doi.org/10.1016/j.bbrc.2016.07.034 YuY HeZ CaoY 2016 TAGLN2, a novel regulator involved in Hepatitis B virus transcription and replication Biochem Biophys Res Commun 477 1051 1058 https://doi.org/10.1016/j.bbrc.2016.07.034 Search in Google Scholar

Zeng C, Zhang H (2021) Mechanisms of transgelin-2 in tumorigenesis. Discov Med 32:23–28. https://doi.org/10.1083/jcb.121.5.1065 ZengC ZhangH 2021 Mechanisms of transgelin-2 in tumorigenesis Discov Med 32 23 28 https://doi.org/10.1083/jcb.121.5.1065 Search in Google Scholar

Zhang J, Zhu J, Chen X et al. (2022b) E3 ubiquitin ligase Trim33 ubiquitylates Annexin A2 to promote NF-κB induced skin inflammation in psoriasis. J Dermatol Sci 107:160–168. https://doi.org/10.1016/j.jdermsci.2022.09.002 ZhangJ ZhuJ ChenX 2022b E3 ubiquitin ligase Trim33 ubiquitylates Annexin A2 to promote NF-κB induced skin inflammation in psoriasis J Dermatol Sci 107 160 168 https://doi.org/10.1016/j.jdermsci.2022.09.002 Search in Google Scholar

Zhang Q, Wei J, Liu Z et al. (2022a) STING signaling sensing of DRP1-dependent mtDNA release in kupffer cells contributes to lipopolysaccharide-induced liver injury in mice. Redox Biol 54:102367. https://doi.org/10.1016/j.redox.2022.102367 ZhangQ WeiJ LiuZ 2022a STING signaling sensing of DRP1-dependent mtDNA release in kupffer cells contributes to lipopolysaccharide-induced liver injury in mice Redox Biol 54 102367 https://doi.org/10.1016/j.redox.2022.102367 Search in Google Scholar

Zhao S, Li B, Zhao R et al. (2023) Hypoxia-induced circADAMTS6 in a TDP43-dependent manner accelerates glioblastoma progression via ANXA2/NF-κB pathway. Oncogene 42:138–153. https://doi.org/10.1038/s41388-022-02542-0 ZhaoS LiB ZhaoR 2023 Hypoxia-induced circADAMTS6 in a TDP43-dependent manner accelerates glioblastoma progression via ANXA2/NF-κB pathway Oncogene 42 138 153 https://doi.org/10.1038/s41388-022-02542-0 Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
1 volte all'anno
Argomenti della rivista:
Medicina, Scienze medicali di base, Biochimica, Immunologia, Medicina clinica, Medicina clinica, altro, Chimica clinica