This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Almeida JI, Tenreiro MF, Martinez-Santamaria L et al. (2022) Hallmarks of the human intestinal microbiome on liver maturation and function. J Hepatol 76:694–725. https://doi.org/10.1016/j.jhep.2021.10.015AlmeidaJITenreiroMFMartinez-SantamariaL2022Hallmarks of the human intestinal microbiome on liver maturation and functionJ Hepatol76694725https://doi.org/10.1016/j.jhep.2021.10.015Search in Google Scholar
Chen X, He WT, Hu L et al. (2016) Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res 26:1007–1020. https://doi.org/10.1038/cr.2016.100ChenXHeWTHuL2016Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosisCell Res2610071020https://doi.org/10.1038/cr.2016.100Search in Google Scholar
Dong V, Nanchal R, Karvellas CJ (2020) Pathophysiology of acute liver failure. Nutr Clin Pract 35:24–29. https://doi.org/10.1002/ncp.10459DongVNanchalRKarvellasCJ2020Pathophysiology of acute liver failureNutr Clin Pract352429https://doi.org/10.1002/ncp.10459Search in Google Scholar
Fernandes-Alnemri T, Wu J, Yu JW et al. (2007) The pyroptosome: A supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 14:1590–1604. https://doi.org/10.1038/sj.cdd.4402194Fernandes-AlnemriTWuJYuJW2007The pyroptosome: A supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activationCell Death Differ1415901604https://doi.org/10.1038/sj.cdd.4402194Search in Google Scholar
Habtezion A, Gukovskaya AS, Pandol SJ (2019) Acute pancreatitis: A multifaceted set of organelle and cellular interactions. Gastroenterology 156:1941–1950. https://doi.org/10.1053/j.gastro.2018.11.082HabtezionAGukovskayaASPandolSJ2019Acute pancreatitis: A multifaceted set of organelle and cellular interactionsGastroenterology15619411950https://doi.org/10.1053/j.gastro.2018.11.082Search in Google Scholar
Hyun JJ, Lee HS (2014) Experimental models of pancreatitis. Clin Endosc 47:212–216. https://doi.org/10.5946/ce.2014.47.3.212HyunJJLeeHS2014Experimental models of pancreatitisClin Endosc47212216https://doi.org/10.5946/ce.2014.47.3.212Search in Google Scholar
Ismail OZ, Bhayana V (2017) Lipase or amylase for the diagnosis of acute pancreatitis? Clin Biochem 50:1275–1280. https://doi.org/10.1016/j.clinbiochem.2017.07.003IsmailOZBhayanaV2017Lipase or amylase for the diagnosis of acute pancreatitis?Clin Biochem5012751280https://doi.org/10.1016/j.clinbiochem.2017.07.003Search in Google Scholar
Jaber S, Garnier M, Asehnoune K et al. (2022) Guidelines for the management of patients with severe acute pancreatitis, 2021. Anaesth Crit Care Pain Med 41:101060. https://doi.org/10.1016/j.accpm.2022.101060JaberSGarnierMAsehnouneK2022Guidelines for the management of patients with severe acute pancreatitis, 2021Anaesth Crit Care Pain Med41101060https://doi.org/10.1016/j.accpm.2022.101060Search in Google Scholar
Ji R, Chen Y, Chen W et al. (2021) Identification of significant genes and pathways in acute pancreatitis via bioinformatical analysis. Dig Dis Sci 66:3045–3053. https://doi.org/10.1007/s10620-020-06598-4JiRChenYChenW2021Identification of significant genes and pathways in acute pancreatitis via bioinformatical analysisDig Dis Sci6630453053https://doi.org/10.1007/s10620-020-06598-4Search in Google Scholar
Jorgensen I, Miao EA (2015) Pyroptotic cell death defends against intracellular pathogens. Immunol Rev 265:130–142. https://doi.org/10.1111/imr.12287JorgensenIMiaoEA2015Pyroptotic cell death defends against intracellular pathogensImmunol Rev265130142https://doi.org/10.1111/imr.12287Search in Google Scholar
Kim HR, Lee HS, Lee KS et al. (2017) An essential role for TAGLN2 in Phagocytosis of lipopolysaccharide-activated macrophages. Sci Rep 7:8731. https://doi.org/10.1038/s41598-017-09144-xKimHRLeeHSLeeKS2017An essential role for TAGLN2 in Phagocytosis of lipopolysaccharide-activated macrophagesSci Rep78731https://doi.org/10.1038/s41598-017-09144-xSearch in Google Scholar
Kim HR, Park JS, Karabulut H et al. (2021a) Transgelin-2: A double-edged sword in immunity and cancer metastasis. Front Cell Dev Biol 9:606149. https://doi.org/10.3389/fcell.2021.606149KimHRParkJSKarabulutH2021aTransgelin-2: A double-edged sword in immunity and cancer metastasisFront Cell Dev Biol9606149https://doi.org/10.3389/fcell.2021.606149Search in Google Scholar
Kim HR, Park JS, Park JH et al. (2021b) Cell-permeable transgelin-2 as a potent therapeutic for dendritic cell-based cancer immunotherapy. J Hematol Oncol 14:43. https://doi.org/10.1186/s13045-021-01058-6KimHRParkJSParkJH2021bCell-permeable transgelin-2 as a potent therapeutic for dendritic cell-based cancer immunotherapyJ Hematol Oncol1443https://doi.org/10.1186/s13045-021-01058-6Search in Google Scholar
Lee PJ, Papachristou GI (2019) New insights into acute pancreatitis. Nat Rev Gastroenterol Hepatol 16:479–496. https://doi.org/10.1038/s41575-019-0158-2LeePJPapachristouGI2019New insights into acute pancreatitisNat Rev Gastroenterol Hepatol16479496https://doi.org/10.1038/s41575-019-0158-2Search in Google Scholar
Ling X, Qi C, Cao K et al. (2024) METTL3-mediated deficiency of lncRNA HAR1A drives non-small cell lung cancer growth and metastasis by promoting ANXA2 stabilization. Cell Death Discov 10:203. https://doi.org/10.1038/s41420-024-01965-wLingXQiCCaoK2024METTL3-mediated deficiency of lncRNA HAR1A drives non-small cell lung cancer growth and metastasis by promoting ANXA2 stabilizationCell Death Discov10203https://doi.org/10.1038/s41420-024-01965-wSearch in Google Scholar
Liu K, Liu J, Zou B et al. (2022) Trypsin-mediated sensitization to ferroptosis increases the severity of pancreatitis in mice. Cell Mol Gastroenterol Hepatol 13:483–500. https://doi.org/10.1016/j.jcmgh.2021.09.008LiuKLiuJZouB2022Trypsin-mediated sensitization to ferroptosis increases the severity of pancreatitis in miceCell Mol Gastroenterol Hepatol13483500https://doi.org/10.1016/j.jcmgh.2021.09.008Search in Google Scholar
Li H, Wu D, Zhang H et al. (2023) New insights into regulatory cell death and acute pancreatitis. Heliyon 9:e18036. https://doi.org/10.1016/j.heliyon.2023.e18036LiHWuDZhangH2023New insights into regulatory cell death and acute pancreatitisHeliyon9e18036https://doi.org/10.1016/j.heliyon.2023.e18036Search in Google Scholar
Li Z, Ye Z, Ma J et al. (2021) MicroRNA-133b alleviates doxorubicin-induced cardiomyocyte apoptosis and cardiac fibrosis by tar-geting PTBP1 and TAGLN2. Int J Mol Med 48:125. https://doi.org/10.3892/ijmm.2021.4958LiZYeZMaJ2021MicroRNA-133b alleviates doxorubicin-induced cardiomyocyte apoptosis and cardiac fibrosis by tar-geting PTBP1 and TAGLN2Int J Mol Med48125https://doi.org/10.3892/ijmm.2021.4958Search in Google Scholar
Li H, Zeng X, Sun D et al. (2024) Albiflorin alleviates severe acute pancreatitis-associated liver injury by inactivating P38MAPK/NF-κB signaling pathway. Biochem Genet 62:4987–5003. https://doi.org/10.1007/s10528-024-10686-9LiHZengXSunD2024Albiflorin alleviates severe acute pancreatitis-associated liver injury by inactivating P38MAPK/NF-κB signaling pathwayBiochem Genet6249875003https://doi.org/10.1007/s10528-024-10686-9Search in Google Scholar
Mandalia A, Wamsteker EJ, DiMagno MJ (2018) Recent advances in understanding and managing acute pancreatitis. F1000Res 7:F1000FacultyRev–959. https://doi.org/10.12688/f1000research.14244.2MandaliaAWamstekerEJDiMagnoMJ2018Recent advances in understanding and managing acute pancreatitisF1000Res7F1000FacultyRev–959. https://doi.org/10.12688/f1000research.14244.2Search in Google Scholar
Mareninova OA, Hermann K, French SW et al. (2009) Impaired autophagic flux mediates acinar cell vacuole formation and tryp-sinogen activation in rodent models of acute pancreatitis. J Clin Invest 119:3340–3355. https://doi.org/10.1172/jci38674MareninovaOAHermannKFrenchSW2009Impaired autophagic flux mediates acinar cell vacuole formation and tryp-sinogen activation in rodent models of acute pancreatitisJ Clin Invest11933403355https://doi.org/10.1172/jci38674Search in Google Scholar
Na BR, Jun CD (2015) TAGLN2-mediated actin stabilization at the immunological synapse: Implication for cytotoxic T cell control of target cells. BMB Rep 48:369–370. https://doi.org/10.5483/bmbrep.2015.48.7.132NaBRJunCD2015TAGLN2-mediated actin stabilization at the immunological synapse: Implication for cytotoxic T cell control of target cellsBMB Rep48369370https://doi.org/10.5483/bmbrep.2015.48.7.132Search in Google Scholar
O'Dea E, Hoffmann A (2009) NF-κB signaling. Wiley Interdiscip Rev Syst Biol Med 1:107–115. https://doi.org/10.1002/wsbm.30O'DeaEHoffmannA2009NF-κB signalingWiley Interdiscip Rev Syst Biol Med1107115https://doi.org/10.1002/wsbm.30Search in Google Scholar
Osna NA, Poluektova LY (2023) Elucidating the role of extracellular vesicles in liver injury induced by HIV. Expert Rev Gastroenterol Hepatol 17:701–708. https://doi.org/10.1080/17474124.2023.2230867OsnaNAPoluektovaLY2023Elucidating the role of extracellular vesicles in liver injury induced by HIVExpert Rev Gastroenterol Hepatol17701708https://doi.org/10.1080/17474124.2023.2230867Search in Google Scholar
Pan T, Wang S, Wang Z (2023) An integrated analysis identified TAGLN2 as an oncogene indicator related to prognosis and immunity in Pan-cancer. J Cancer 14:1809–1836. https://doi.org/10.7150/jca.84454PanTWangSWangZ2023An integrated analysis identified TAGLN2 as an oncogene indicator related to prognosis and immunity in Pan-cancerJ Cancer1418091836https://doi.org/10.7150/jca.84454Search in Google Scholar
Piao X, Sui X, Liu B et al. (2021) Picroside II improves severe acute pancreatitis-induced hepatocellular injury in rats by affecting JAK2/STAT3 phosphorylation signaling. Biomed Res Int 2021:9945149. https://doi.org/10.1155/2021/9945149PiaoXSuiXLiuB2021Picroside II improves severe acute pancreatitis-induced hepatocellular injury in rats by affecting JAK2/STAT3 phosphorylation signalingBiomed Res Int20219945149https://doi.org/10.1155/2021/9945149Search in Google Scholar
Rej R (1989) Aminotransferases in disease. Clin Lab Med 9:667–687. https://doi.org/10.1016/S0272-2712(18)30598-5RejR1989Aminotransferases in diseaseClin Lab Med9667687https://doi.org/10.1016/S0272-2712(18)30598-5Search in Google Scholar
Shapland C, Hsuan JJ, Totty NF et al. (1993) Purification and properties of transgelin: A transformation and shape change sensitive actin-gelling protein. J Cell Biol 121:1065–1073. https://doi.org/10.1083/jcb.121.5.1065ShaplandCHsuanJJTottyNF1993Purification and properties of transgelin: A transformation and shape change sensitive actin-gelling proteinJ Cell Biol12110651073https://doi.org/10.1083/jcb.121.5.1065Search in Google Scholar
Shi J, Ren M, She X et al. (2020) Transgelin-2 contributes to proliferation and progression of hepatocellular carcinoma via regulat-ing Annexin A2. Biochem Biophys Res Commun 523:632–638. https://doi.org/10.1016/j.bbrc.2020.01.028ShiJRenMSheX2020Transgelin-2 contributes to proliferation and progression of hepatocellular carcinoma via regulat-ing Annexin A2Biochem Biophys Res Commun523632638https://doi.org/10.1016/j.bbrc.2020.01.028Search in Google Scholar
Shojaie L, Iorga A, Dara L (2020) Cell death in liver diseases: A review. Int J Mol Sci 21:9682. https://doi.org/10.3390/ijms21249682ShojaieLIorgaADaraL2020Cell death in liver diseases: A reviewInt J Mol Sci219682https://doi.org/10.3390/ijms21249682Search in Google Scholar
Swisher JF, Khatri U, Feldman GM (2007) Annexin A2 is a soluble mediator of macrophage activation. J Leukoc Biol 82:1174–1184. https://doi.org/10.1189/jlb.0307154SwisherJFKhatriUFeldmanGM2007Annexin A2 is a soluble mediator of macrophage activationJ Leukoc Biol8211741184https://doi.org/10.1189/jlb.0307154Search in Google Scholar
Tian X, Yang W, Jiang W et al. (2024) Multi-omics profiling identifies microglial Annexin A2 as a key mediator of NF-κB pro-inflammatory signaling in ischemic reperfusion injury. Mol Cell Proteomics 23:100723. https://doi.org/10.1016/j.mcpro.2024.100723TianXYangWJiangW2024Multi-omics profiling identifies microglial Annexin A2 as a key mediator of NF-κB pro-inflammatory signaling in ischemic reperfusion injuryMol Cell Proteomics23100723https://doi.org/10.1016/j.mcpro.2024.100723Search in Google Scholar
Wallach D, Kang TB, Dillon CP et al. (2016) Programmed necrosis in inflammation: Toward identification of the effector molecules. Science 352:aaf2154. https://doi.org/10.1126/science.aaf2154WallachDKangTBDillonCP2016Programmed necrosis in inflammation: Toward identification of the effector moleculesScience352aaf2154https://doi.org/10.1126/science.aaf2154Search in Google Scholar
Wang H, Zhang X, Liu C et al. (2022) TAGLN2-regulated trophoblast migration, invasion and fusion are impaired in preeclampsia. Front Cell Dev Biol 10:810633. https://doi.org/10.3389/fcell.2022.810633WangHZhangXLiuC2022TAGLN2-regulated trophoblast migration, invasion and fusion are impaired in preeclampsiaFront Cell Dev Biol10810633https://doi.org/10.3389/fcell.2022.810633Search in Google Scholar
Wang T, Zhao D, Zhang Y et al. (2024) Annexin A2: A double-edged sword in pathogen infection. Pathogens 13:564. https://doi.org/10.3390/pathogens13070564WangTZhaoDZhangY2024Annexin A2: A double-edged sword in pathogen infectionPathogens13564https://doi.org/10.3390/pathogens13070564Search in Google Scholar
Wu Q, Zhao B (2023) Isoflurane ameliorates oxygen-glucose deprivation-induced cardiomyocyte injury through SIRT6/DNMT1 pathway. Signa Vitae 19:154–160. https://doi.org/10.22514/sv.2023.020WuQZhaoB2023Isoflurane ameliorates oxygen-glucose deprivation-induced cardiomyocyte injury through SIRT6/DNMT1 pathwaySigna Vitae19154160https://doi.org/10.22514/sv.2023.020Search in Google Scholar
Xiao AY, Tan ML, Wu LM et al. (2016) Global incidence and mortality of pancreatic diseases: A systematic review, meta-analysis, and meta-regression of population-based cohort studies. Lancet Gastroenterol Hepatol 1:45–55. https://doi.org/10.1016/s2468-1253(16)30004-8XiaoAYTanMLWuLM2016Global incidence and mortality of pancreatic diseases: A systematic review, meta-analysis, and meta-regression of population-based cohort studiesLancet Gastroenterol Hepatol14555https://doi.org/10.1016/s2468-1253(16)30004-8Search in Google Scholar
Xu H, Chen X, Liu D et al. (2023) Hispidulin protective impact on sepsis induced acute kidney injury is mediated by regulation of AKT and NF-κB pathway. Signa Vitae 19:152–159. https://doi.org/10.22514/sv.2023.109XuHChenXLiuD2023Hispidulin protective impact on sepsis induced acute kidney injury is mediated by regulation of AKT and NF-κB pathwaySigna Vitae19152159https://doi.org/10.22514/sv.2023.109Search in Google Scholar
Yang CJ, Chen J, Phillips AR et al. (2014) Predictors of severe and critical acute pancreatitis: A systematic review. Dig Liver Dis 46:446–451. https://doi.org/10.1016/j.dld.2014.01.158YangCJChenJPhillipsAR2014Predictors of severe and critical acute pancreatitis: A systematic reviewDig Liver Dis46446451https://doi.org/10.1016/j.dld.2014.01.158Search in Google Scholar
Yang H, Liu D, Wang Y (2023) Physalin A exerts neuroprotective effects: Inhibition of OGD/R-induced cellular pyroptosis and inflammatory responses in nerve cells. Signa Vitae 19:168–174. https://doi.org/10.22514/sv.2023.111YangHLiuDWangY2023Physalin A exerts neuroprotective effects: Inhibition of OGD/R-induced cellular pyroptosis and inflammatory responses in nerve cellsSigna Vitae19168174https://doi.org/10.22514/sv.2023.111Search in Google Scholar
Yan J, Li S, Li S (2014) The role of the liver in sepsis. Int Rev Immunol 33:498–510. https://doi.org/10.3109/08830185.2014.889129YanJLiSLiS2014The role of the liver in sepsisInt Rev Immunol33498510https://doi.org/10.3109/08830185.2014.889129Search in Google Scholar
Yin LM, Ulloa L, Yang YQ (2019) Transgelin-2: Biochemical and clinical implications in cancer and asthma. Trends Biochem Sci 44:885–896. https://doi.org/10.1016/j.tibs.2019.05.004YinLMUlloaLYangYQ2019Transgelin-2: Biochemical and clinical implications in cancer and asthmaTrends Biochem Sci44885896https://doi.org/10.1016/j.tibs.2019.05.004Search in Google Scholar
Yu Y, He Z, Cao Y et al. (2016) TAGLN2, a novel regulator involved in Hepatitis B virus transcription and replication. Biochem Biophys Res Commun 477:1051–1058. https://doi.org/10.1016/j.bbrc.2016.07.034YuYHeZCaoY2016TAGLN2, a novel regulator involved in Hepatitis B virus transcription and replicationBiochem Biophys Res Commun47710511058https://doi.org/10.1016/j.bbrc.2016.07.034Search in Google Scholar
Zeng C, Zhang H (2021) Mechanisms of transgelin-2 in tumorigenesis. Discov Med 32:23–28. https://doi.org/10.1083/jcb.121.5.1065ZengCZhangH2021Mechanisms of transgelin-2 in tumorigenesisDiscov Med322328https://doi.org/10.1083/jcb.121.5.1065Search in Google Scholar
Zhang J, Zhu J, Chen X et al. (2022b) E3 ubiquitin ligase Trim33 ubiquitylates Annexin A2 to promote NF-κB induced skin inflammation in psoriasis. J Dermatol Sci 107:160–168. https://doi.org/10.1016/j.jdermsci.2022.09.002ZhangJZhuJChenX2022bE3 ubiquitin ligase Trim33 ubiquitylates Annexin A2 to promote NF-κB induced skin inflammation in psoriasisJ Dermatol Sci107160168https://doi.org/10.1016/j.jdermsci.2022.09.002Search in Google Scholar
Zhang Q, Wei J, Liu Z et al. (2022a) STING signaling sensing of DRP1-dependent mtDNA release in kupffer cells contributes to lipopolysaccharide-induced liver injury in mice. Redox Biol 54:102367. https://doi.org/10.1016/j.redox.2022.102367ZhangQWeiJLiuZ2022aSTING signaling sensing of DRP1-dependent mtDNA release in kupffer cells contributes to lipopolysaccharide-induced liver injury in miceRedox Biol54102367https://doi.org/10.1016/j.redox.2022.102367Search in Google Scholar
Zhao S, Li B, Zhao R et al. (2023) Hypoxia-induced circADAMTS6 in a TDP43-dependent manner accelerates glioblastoma progression via ANXA2/NF-κB pathway. Oncogene 42:138–153. https://doi.org/10.1038/s41388-022-02542-0ZhaoSLiBZhaoR2023Hypoxia-induced circADAMTS6 in a TDP43-dependent manner accelerates glioblastoma progression via ANXA2/NF-κB pathwayOncogene42138153https://doi.org/10.1038/s41388-022-02542-0Search in Google Scholar